> Shunsuke Yatabe

Outline

Preliminaries

Motivation

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets Coding How it looks like

The comparison to ω -inconsistent truth theories In truth theories A difference

Conclusion

Yablo's paradox and ω -inconsistency

Shunsuke Yatabe

Graduate School of Letters, Kyoto University, Japan shunsuke.yatabe@gmail.com

Numbers and Truth 20 October 2012, Gothenburg

Shunsuke Yatabe

Outline

Preliminaries

Motivation Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets Coding

The comparison to ω -inconsistent truth theories In truth theories A difference

Conclusion

Outline

Theme: a syntactical nature of Yablo's paradox

 how Yablo propositions, paradoxical sentences in Yablo's paradox, are constructed: coinductive construction

Testbed: *w*-inconsistency

- Yablo propositions have been constructed in ω-inconsistent truth theories,
- is *ω*-inconsistency necessary to construct Yablo propositions?

Results: working in ZFA and comparing that to the results in truth theories

- we can code Yablo propositions by using hypersets though ZFA is ω-consistent,
- ω-consistency:
 - ZFA allows coinduction,
 - truth theories only allows the **mixture of** induction and coninduction.

> Shunsuke Yatabe

Outline

Preliminaries

Motivation

Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets Coding How it looks like

The comparison to w-inconsistent

truth theories

Conclusion

Yablo's Paradox

Let us assume there exist infinitely many propositions (S_0, S_1, S_2, \dots) such that

 S_n insists that S_i is false for any i > n

they imply a contradiction in classical logic.

- If S₀ is false,
 - there must be j > 0 such that S_j is true, so all $S_{j+1}, S_{j+2}, S_{j+3}, \dots, S_k, \dots$ must be false,
 - however, if S_{j+1} is false, then there exists k > j + 1 such that S_k is true, a contradiction.
- If S_0 is true, then S_1, S_2, \cdots are false, identical to the previous case.

> Shunsuke Yatabe

Outline

Preliminaries

Motivation

Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets Coding

How it looks like

The

 $\begin{array}{c} \text{comparison to}\\ \boldsymbol{\omega}\text{-inconsistent}\\ \text{truth theories}\\ \text{In truth theories}\\ \text{A difference} \end{array}$

Conclusion

Motivation (1): providing a comparison example

A source of trouble:

only one method of constructing $\langle S_n : n \in \omega \rangle$ is known, using **diagonalization** in a truth theory [P97].

• Problem:

The lack of comparison examples could lead to a **misunderstanding**: we might regard properties that **contingently** hold in the truth theory (and do not hold in other theories) as **essential** properties of Yablo's paradox.

• Example:

- consistent truth theories with sufficient expressive power should be ω-inconsistent [L01],
- but we do not know whether ω-inconsistency is essential in Yablo's paradox.

Shunsuke Yatabe

Outline

Preliminaries

Motivation

Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets Coding

The comparison to ω -inconsistent truth theories

A difference

Motivation (2): Coinductive construction

Yablo's paradox is important b/c it is an interesting example of coinductive construction:

- A characteristic property of Yablo propositions:
 - each S_i is constructed by directly using S_{i+1} and S_{i+2}:
 S_i is intuitively ∧_{j>i} ¬Tr([S_j]): therefore,

$$S_i \equiv \neg \operatorname{Tr}(\lceil S_{i+1} \rceil) \land S_{i+2}$$

$$\neg S_i \equiv \operatorname{Tr}(\lceil S_{i+1} \rceil) \lor \neg S_{i+2}.$$

- infinite regress; we need infinitely many $(S_{i+1}, S_{i+2}, S_{i+3}, \dots)$ to construct S_i in the end.
- Such constructions are called coinductive,
 - widely used in computer science to represent behaviors of non-terminate automatons [C93],
 - they are potentially infinite objects by finite constructions,

> Shunsuke Yatabe

Outline

Preliminaries

Motivation Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets Coding

The

 $\begin{array}{c} \text{comparison to}\\ \boldsymbol{\omega}\text{-inconsistent}\\ \text{truth theories}\\ \text{In truth theories}\\ \text{A difference} \end{array}$

Conclusion

A coinductive language

We need **coinductive language** to write down Yablo propositions:

- One of the most famos coinductive language is to use ZFA [BE87] [BM96]
 - done by coding coinductively defined propositions by hypersets!
 - Yablo once suggested fixing ZFA as an analysis framework [Yab06], but abandoned this.
- The real significance of the framework of the liar [BE87] is
 - not to solve the liar paradox,
 - but to provide a common framework of analyzing circular and co-inductive propositions!

We can code propositions, construct semantics, etc.

> Shunsuke Yatabe

Outline

Preliminaries

Motivation Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets Coding

The

 $\begin{array}{c} \text{comparison to}\\ \boldsymbol{\omega}\text{-inconsistent}\\ \text{truth theories}\\ \text{In truth theories}\\ \text{A difference} \end{array}$

Conclusion

ZFA

ZFA is an axiomatic set theory, **ZF** minus the axiom of foundation plus the anti-foundation axiom (**AFA**).

• flat system:

 $\langle X, A, e \rangle$ is a flat system of equations if

- $X \subseteq U$ (urelements, interpreted as variables),
- A is an arbitrary set, and
- $e: X \to \mathcal{P}(X \cup A)$.
- **Example:** $\langle \{a\}, \emptyset, \{\langle a, \{a\} \rangle \} \rangle$ represents the equation

 $x=\{x\}$

where x is a free variable since $e(a) = \{a\}$.

 Theorem: AFA guarantees that any flat system of equations defines hypersets uniquely. This is a sort of coinductive definition: consider the equations x_n = {x_{n+1}, x_{n+2}} for any n ∈ ω!

> Shunsuke Yatabe

Outline

Preliminaries

Motivation

Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets

Coding

How it looks like

The

 $\begin{array}{c} \text{comparison to}\\ \boldsymbol{\omega}\text{-inconsistent}\\ \text{truth theories}\\ \text{In truth theories}\\ \text{A difference} \end{array}$

Conclusion

Coding propositions in ZFA (original)

• Propositions are coinductively coded in ZFA as follows:

infinitary conjunction

 $\lceil \wedge_{i \in I} A_i \rceil = \{\{\mathbf{c}, \lceil A_i \rceil\} : i \in I\}$

• infinitary disjunction

 $\lceil \lor_{i \in I} A_i \rceil = \{\{\mathbf{d}, \lceil A_i \rceil\} : i \in I\}$

- $\lceil \neg A \rceil = \{n, \lceil A \rceil\},\$
- $\lceil \operatorname{Tr}(A) \rceil = \{t, \lceil A \rceil\}$

for some fixed set c, d, n, t.

• **Example:** the liar proposition is coded by λ satisfying

 $x = \{n, \{t, x\}\}$

> Shunsuke Yatabe

Outline

Preliminaries

Motivation Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets

How it looks like

The

 $\begin{array}{c} \text{comparison to}\\ \pmb{\omega}\text{-inconsistent}\\ \text{truth theories}\\ \text{In truth theories}\\ \text{A difference} \end{array}$

Conclusion

Coding Yablo propositions in ZFA (original)

Remember

$$S_i \equiv \wedge_{j \ge i+1} \neg \operatorname{Tr}(\lceil S_j \rceil)$$

Therefore Yablo propositions $\{S_n : n \in \omega\}$ are coded by the following equation:

 $x_n = \{\{c, \{n, \{t, x_k\}\}\} : k > n\}$

Then S_0, S_1, \cdots are solutions of x_0, x_1, \cdots .

> Shunsuke Yatabe

Outline

Preliminaries

Motivation

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets

Coding

How it looks like

The

 $\begin{array}{c} \text{comparison to}\\ \pmb{\omega}\text{-inconsistent}\\ \text{truth theories}\\ \text{In truth theories}\\ \text{A difference} \end{array}$

Conclusion

Coding Yablo propositions in ZFA (More intuitive)

- Truth predicate is not necessary for simulating the structure of derivations in Yablo's paradox in ZFA!
- Defining positive and negative propositions separately:
 - **positive propositions**: Y_0, Y_1, \cdots are solutions of x_0, x_1, \cdots ,
 - **negative propositions**: $\neg Y_0, \neg Y_1, \cdots$ are solutions of y_0, y_1, \cdots
- The equations are as follows:

 $x_n = \{\{c, y_k\} : k > n\}$ $y_n = \{\{d, x_k\} : k > n\}$

• The intuitive meaning: $Y_n \equiv \wedge_{n < i} \neg Y_i$ and $\neg Y_n \equiv \vee_{n < i} Y_i$,

Remark: Yablo pointed out that they are identical in **ZFA**, but adding indexes makes them pairwise different!

Shunsuke Yatabe

Outline

Preliminaries

Motivation Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets Coding How it looks like

The comparison to ω -inconsistent truth theories In truth theories A difference

Conclusion

How Yablo trees look like?

Yablo propositions forms self-similar infinite branching tree of infinite height

Red: infinite conjunction, Blue: infinite disjunction

> Shunsuke Yatabe

Outline

Preliminaries

Motivation Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets Coding

How it looks like

The comparison to ω -inconsistent truth theories

A difference

Conclusion

What makes different on ω -consistency?

• Known:

well-known consistent theories with sufficient expressive power are ω -inconsistent.

- Yablo paradox,
- McGee's paradox for Γ [Mc85] and CT_{ω} [HH05],
- Modest liar paradox for PAŁTr₂ [HPS00], etc.

• What we have shown:

Yablo propositions can be constructed in ZFA though it is

- consistent,
- ω-consistent,
- Problem: what makes the difference?

Shunsuke Yatabe

Outline

Preliminaries

Motivation

Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets Coding

The comparison to ω -inconsistent truth theories In truth theories A difference

.....

Conclusion

The main difference

• ZFA: coinduction

- the construction does not have initial case,
- truth predicate is not necessary (ZFA already has a machinery for coinductive construction),
- truth theories: the mixture of induction and coinduction (coinductive construction with the initial case.)
 - have an initial case
 - truth predicate is necessary: it enables to apply the fixed point lemma (which generate potentially infinite propositions).

> Shunsuke Yatabe

Outline

Preliminaries

Motivation

ZFA

A coinductive language coded in

Coding Yablo propositions by Hypersets Coding How it looks like

The comparison to ω-inconsistent truth theories In truth theories

Conclusion

Potentially infinite propositions in truth theories

Yablo proposition S
⁰/₀ is constructed by the fixed point lemma:

$$\overline{S}_0 \equiv (\forall z)[z > 0 \rightarrow \neg \underbrace{\operatorname{Sat}(\lceil \overline{S}_0 \rceil, z)}_{\operatorname{Tr}(\overline{S}_z)}],$$

where $\operatorname{Sat}(\lceil \varphi(x) \rceil, z) \equiv \operatorname{Tr}(\lceil \varphi(z) \rceil)$.

 The intuitive meaning of paradoxical formulae: Yablo infinite sentence

 $\bar{S}_0 \equiv \neg \operatorname{Tr}(\bar{S}_1) \land (\neg \operatorname{Tr}(\bar{S}_2) \land (\neg \operatorname{Tr}(\bar{S}_3) \land \cdots)))$

McGee infinite sentence (nested)

 $\gamma \equiv \neg \mathrm{Tr}(\lceil \mathrm{Tr}(\lceil \mathrm{Tr}(\lceil \mathrm{Tr}(\lceil \gamma \rceil) \cdots \rceil) \rceil) \rceil))$

Modest liar infinite sentence (nested)

 $A \equiv \operatorname{Tr}(\neg A \to (\neg A \to \cdots \to (\neg A \to A) \cdots))$

> Shunsuke Yatabe

Outline

Preliminaries

Motivation

Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets Coding How it looks like

The comparison to ω -inconsistent truth theories In truth theories A difference

Conclusion

The closer look at McGee's Paradox

ω-inconsistency is proved by γ in Γ [Mc85]:

$$\gamma \equiv \neg \forall x \operatorname{Tr}(f(x, \lceil \gamma \rceil))$$
$$f(n, \lceil \varphi \rceil) = [\underbrace{\operatorname{Tr}(\lceil \cdots \operatorname{Tr}}_{n \text{ times}} (\lceil \varphi \rceil) \cdots)]$$

 γ is a limit of the following (finite) operations:

 $\gamma_{0} \equiv \neg \operatorname{Tr}(\lceil \gamma \rceil) \qquad \cdots \text{ the initial case!}$ $\gamma_{1} \equiv \neg \operatorname{Tr}[\operatorname{Tr}(\lceil \gamma \rceil) \rceil)$ $\gamma_{2} \equiv \neg \operatorname{Tr}[\operatorname{Tr}[\operatorname{Tr}(\lceil \gamma \rceil) \rceil) \rceil$ \vdots $\gamma \equiv \neg \underbrace{\operatorname{Tr}(\lceil \cdots (\lceil \operatorname{Tr}(\lceil \gamma \rceil) \rceil) \cdots) \rceil) \qquad \cdots \text{ the limit}$

$$In ZFA, \quad x = \{n, y\}$$

$$y = \{t, y\}$$

> Shunsuke Yatabe

Outline

Preliminaries

Motivation

Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets Coding

How it looks like

The comparison to ω -inconsistent truth theories In truth theories A difference

Conclusion

The comparison

- The meaning of infinitary propositions is different from finite propositions: inductive evaluation does not work,
- if the infinitary proposition is defined as the limit of finite propositions,
 - taking the limit sometimes violates a property which is own by any finite propositions in the limit sequence:
 - γ is a limit of the following (finite) operations:

γ0	≡	¬ Tr ([γ])
γ1	≡	$\neg \mathrm{Tr}[\mathrm{Tr}(\lceil \gamma \rceil)])$
	÷	
γ	≡	$\neg \underbrace{\mathrm{Tr}(\lceil \cdots (\lceil \mathrm{Tr}(\lceil \gamma \rceil) \rceil) \cdots) \rceil)}$
		∞ many

In ZFA, coinductive propositions are isolated from finite propositions.

$$g = \{n, \{t, \{t, \{t, \dots\}\}\}\}$$

> Shunsuke Yatabe

Outline

Preliminaries

Motivation Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets Coding

The comparison to ω -inconsistent truth theories

In truth theories A difference

Conclusion

Conclusion

Theme: how Yablo propositions are constructed: coinductive construction

Our results: we coded Yablo propositions by using hypersets though ZFA is ω -consistent,

- ω-inconsistency is not necessary,
- it is caused by the difference of the form of construction,
 - ZFA allows pure coinduction,
 - truth theories only allows the mixture of induction and coninduction.

Future task: semantics

- Barwise-Etchemendy [BE87] style (done),
- Game theoretic semantics?

> Shunsuke Yatabe

Outline

Preliminaries

Motivation Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets Coding How it looks like

The comparison to ω -inconsistent truth theories In truth theories A difference

Conclusion

Jon Barwise. John Etchemendy. The Liar: An Essay in Truth and Circularity. Oxford University Press (1987)

- Jon Barwise, Lawrence Moss. Vicious Circles. CSLI publications (1996)
- Thierry Coquand. Infinite Objects in Type Theory. TYPES (1993) 62-78.
 - Petr Hájek, Jeff B. Paris, John C. Shepherdson. "The Liar Paradox and Fuzzy Logic" Journal of Symbolic Logic, 65(1) (2000) 339-346.
- Volker Halbach and Leon Horsten. The deflationist's axioms for truth. in J.C. Beal and B. Armour-Garb (eds.) Deflationism and Paradox. Oxford Universoty Press.
- Hannes Leitgeb. Theories of truth which have no standard models. Studia Logica, 68 (2001) 69-87.
- - Vann McGee. How truthlike can a predicate be? A negative result. Journal of Philosophical Logic, 17 (1985): 399-410.

Lawrence S. Moss. Coalgebra and Circularity. Preprint (2008)

> Shunsuke Yatabe

Outline

Preliminaries

Motivation Coinduction

A coinductive language coded in ZFA

Coding Yablo propositions by Hypersets Coding How it looks like

The comparison to ω -inconsistent truth theories In truth theories A difference

Conclusion

Graham Priest. Yablo's paradox. Analysis 57 (1997) pp.236-242.

- Matteo Viale. The cumulative hierarchy and the constructible universe of ZFA. Mathematical Logic Quarterly, 2004, volume 50, no. 1, pp.99-103.
- Stephen Yablo. Paradox Without Self-Reference. Analysis 53 (1993) 2251-52.
- Stephen Yablo. Circularity and Paradox. Self-reference. in Bolander, Hendricks, Pedersen (eds.), Self-reference, Stanford: CSLI Publications.
- Shunsuke Yatabe. A constructive naive set theory and infinity. Preprint.
- Shunsuke Yatabe. Yablo's paradox, a coinductive language and its semantics. Preprint.