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Quine, Philosophy of Logic (1970) 

    “Change the logic, change the meaning.” 



Quine was referring to a change from classical to 
intuitionistic logic. (Meaning of the connectives.) 

Had officially renounced the notion of meaning as 
unscientific (i.e. unbehavioristic) so remark was a 
departure.  

The concept of meaning may be “fuzzy around the 
edges”  i.e. a criterion of sameness of meaning cannot 
necessarily be given; but there no reason why 
principled sufficient conditions cannot be given, 
namely: change of meaning of a proposition should 
involve a change in its truth conditions. (Quine never 
rejected the notion of truth.)       



Logical pluralism usually arises in connection 
with Carnap: “Principle of Tolerance”; Quine 
(P of L); Beall and Restall look at a particular 
class of “cases”; (relatively) large class of 
standard non-classical logics. Adopt a truth-
functional notion of meaning. (As opposed to a 
“meaning as use” account.)   



Quine: Change the logic, change the truth 
conditions of sentences of the logic. 

Quine’s Dictum, for us: Change the logic, change 
the model class.  

(Example: PA vs PA2) 



Look beyond meaning of the connectives.  
Consider rather logical theories and their models. 

(Though these do not fall under Beall and 
Restall’s “cases.”)   



What we mean by a change of logic: 

Properties that characterize first order logic 
(Lindström Theorem) fail, i.e. failure of 
compactness and/or Löwenheim-Skolem 
Theorem. (For constructive logic there are 
classical, i.e. not constructively valid, proofs of 
compactness and Löwenheim-Skolem.) 

(We may not always have such a measure of 
change of logic.) 



Question 

For canonical set-theoretical structures, does a 
change of logic always involve a change of 
model class? (Extensionally: change of 
meaning?) 

Our answer: For certain canonical structures, no. 



Motivation: Faithfulness 

•  The question of faithfulness: the realization 
that there is always a leap of faith involved in 
formalization; the realization that the gap 
between our intuitions and their formal 
counterparts, is unbridgeable. 

•  That our axiomatizations often turn out to be 
non-categorical (they have many non-
isomorphic models) worsens the problem---in 
fact it epitomizes the problem. 



Incompleteness 

“Let us consider the concept of demonstrability. It is 
well know that whichever way you make it 
precise by means of a formalism, the 
contemplation of this very formalism gives rise to 
new axioms which are exactly as evident as those 
with which you started, and that this process of 
extension can be iterated into the transfinite. So 
there cannot exist any formalism which would 
embrace all these steps…” 

---Gödel, Princeton Bicentennial Remarks, 1946 



Entanglement 

One seeks a natural, unentangled mathematical concept. 

Purity issue? “A purity constraint restricts the resources 
available to solve a problem to those which determine 
it.” (Purity of Methods, Arana, Detlefsen, 2011.)  

ZFC appears to satisfy a purity constraint in that the 
entanglement of canonical set-theoretic structures with the 
underlying logic is apparently minimal. (The epsilon 
relation is “non-logical.” Correspondingly, the entanglement 
with logic is minimal.)       



A few historical examples: 1. Heyting 
on Brouwer	
  

•  “…no formal system can be said to adequately 
represent an intuitionistic theory. There always 
remains a residue of ambiguity in the 
representation of the signs, and it can never be 
proved with mathematical rigour that the 
system of axioms really embraces every valid 
method of proof.” 

•  (Abraham A. Fraenkel and Yehoshua Bar-
Hillel. Foundations of set theory.)     



Heyting on Brouwer cont’ 

•  “…no formalized theory can do justice to 
intuitive (which is for them intuitionistic) 
mathematics or any of its subtheories.” 

•  Fraenkel, Bar-Hillel, ibid.  



2. Bernays 

“It seems in no way appropriate that Cantor’s 
Absolute be identified with set theory 
formalized in standardized logic, which is 
considered from a more comprehensive model 
theory.” 

---Bernays, Letter to Gödel, 1961. (Collected 
Works, vol. 4, Oxford)  



3. Gödel  

Gödel’s second monograph on the consistency of 
the CH, in which the constructible hierarchy is 
given in a logic free way (by the Gödel 
operations), 1946 Princeton Bicentennial 
address; 1956 Dialectica paper, construction is 
explicitly “logic free.” (Troelstra, 
introduction).  



“Formalism free” means… 

•  Formalism is taken in the full, modern sense of 
the term (so not thinking of e.g. the axiomatic 
method of Euclid): Signature, axioms, rules of 
proof, an associated semantics. (For us: 
semantics is included!)  



Formalism Freeness 

Is just the suppression of any of: signature, rules 
of proof, axioms… 

It is a matter of degree (like entanglement). 



“Two analysts who wish to collaborate do not need to 
check whether they were taught the same definition of 
“real number”, as two algebraists do need to check 
whether they are working with the same definition of 
“ring.”” 

---John Burgess, Putting Structuralism in its Place, 2004 
We can ignore the specific set-theoretical construction in 

our definitions. 

Indifferentism of the Practice 



First Order Logic 

FOL is the maximal logic satisfying compactness 
and Downward Lowenheim-Skolem. One can 
therefore view first order logic purely 
semantically with no concern as to the syntax. 
As long as these two model theoretic 
properties are satisfied, the concept of a 
definable model class is the same.  



Model Theory: Mathematical, not 
Logical Properties 

•  Tarski: A class of structures in a finite relational 
language is universally axiomatizable if and only 
if it is closed under isomorphism, substructure and 
if for every finite substructure B of a structure A, 
B ∈ K then A ∈ K.  

•  Birkhoff: A class K of algebras is axiomatized by 
a set of equations if and only it it is closed under 
homomorphism, subalgebra, and direct product. 



Contemporary Model Theory: AEC’s 

•  Shelah, develops the model theory of (large) 
infinitary languages, then dispenses with 
language, merely stating the (mathematical) 
properties needed.  

•  The connection to infinitary languages was then 
forgotten and AECs are studied on their own. One 
wishes to prove categoricity theorems. It was 
essential to have the language in the background, 
but then language could be dispensed with. 

•  Trend in CMT towards the suppression of 
formulas.  



AEC’s 

Abstract Elementary Classes: closure under 
unions of chains, with respect to an abstract 
“submodel relation” (mimics elementary 
submodel relation); other purely mathematical 
properties: JEP and Amalgamation. 



Baldwin’s analysis of theorems about 
AEC’s 

•  Shelah’s Presentation theorem: “passing through 
the syntax, Shelah obtains a purely semantic 
theorem.’’  

•  The syntactic condition in the theorem is a set of 
sentences in roughly Tarski’s sense….but we are 
able to deduce purely semantical conclusions. 

(If an AEC with Lowenheim number 0א has a model 
of cardinality ω1 it has arbitrarily large models. )  



Quasiminimal excellent classes of 
Zilber 

“Zilber’s notion of a quasiminimal excellent class was 
developed to provide a smooth framework for proving 
the categoricity in all uncountable powers of Zilber’s 
pseudo-exponential field. This example itself is 
developed in a standard model theoretic framework in 
Lω1 ,ω (Q)….The fundamental result that a 
quasiminimal excellent class is categorical in all 
uncountable powers can be presented in a formalism-
free way. The key point is that there are no axioms in 
the object language of the general quasiminimal 
excellence theorem; there are only statements about the 
combinatorial geometry determined by what are in the 
application the (Lω1,ω)-definable sets.’’---Baldwin, 
ibid  



“…while formalization is the key tool for the 
general foundational analysis and has had 
significant impact as a mathematical tool, there 
are specific problems in mathematical logic 
(Section 1.3) and philosophy (Section 2) where 
‘formalism-free’ methods are essential.’’  

---J. Baldwin, Formalization, Primitive 
Concepts, and Purity, 2011  



Recursion Theory 
“Although Carol Karp appreciated recursive 

function theory, she disliked proofs which 
involved codings and systems of notations. In her 
work on infinitary set theory she noticed that 
infinitely long formulae sometimes allowed her to 
circumvent notations…She discovered that by 
varying the logic in the system one could get a 
host of results about recursion theory and its 
extensions; furthermore it could be done without 
any ad hoc notations. Unfortunately, she only had 
time to work out some of the details for fragments 
of infinitary languages of the form Law (i.e., 
finite-quantifier infinitary languages).’’  



It was her research on the infinitely long formal 
proofs that led Karp to the concept of L-R.E. 
on A. However, it is clear that the actual 
structure of the proofs is irrelevant, for all that 
is ever used is the consequence relation. Thus, 
for the purpose of discussing extensions of 
recursion theory, it does not make much sense 
to dwell too much upon the axioms and rules 
of inference. Consistency properties are a 
natural way of getting all the benefits of 
completeness while, at the same time, avoiding 
formal proofs. (Lopez-Escobar)  



Väänänen: Mathematics altogether is indifferent to a 
choice of logic, especially when that choice is 
between first order set theory and second order logic. 
From the practical point of view, the working 
mathematician will—and should—be indifferent to 
the choice between FO and SO, and there are deep 
theoretical reasons why this should be the case. (BSL, 
2000, 2012) 



Both logics exhibit the same degree of (internal) 
categoricity, or failure of the same, on close 
inspection.  



“Unreasonable” effectiveness of 
semantic methods: 

•  Theorem (Väänänen-Vardi, Gödel, Parikh): 
Given a concept of provability in predicate 
logic, there is no recursive function f such that 
for all φ that are valid, if the length of the 
proof (in set theory) of validity of φ is n, then 
the length of the predicate logic proof of φ is at 
most f(n).  



Naturalize Content 

Arana: classification of formal and informal 
content. 

Can a notion of set-theoretical content be 
isolated? 

We look at a specific case. 



Part 2: Gödel’s Princeton Bicentennial 
Lecture, 1946  

“Tarski has sketched in his lecture the great 
importance (and I think justly) of the concept 
of general recursiveness (or Turing 
computability). It seems to me that this 
importance is largely due to the fact that with 
this concept one has succeeded in giving a 
absolute definition of an interesting 
epistemological notion, i.e. one not depending 
on the formalism chosen.”     



“In all other cases treated previously, such as 
demonstrability or definability, one has been 
able to define them only relative to a given 
language, and for each individual language it is 
clear that the one thus obtained is not the one 
looked for.” 

E.g. being definable in set theory is not 
definable. “Take the least undefinable 
ordinal…” 



Gödel	
  Princeton	
  Bicentennial	
  lecture	
  1946	
  



Gödel: Intuitive concept (of definability) to be 
made precise: “Comprehensibility by our 
mind.” 



Part	
  2:	
  Implementa:on	
  

3 epistemological notions: computability, 
provability, definability. 

Each come with their own paradoxes. 

For each notion, we want transcendence (of a 
kind)---but we also wish to avoid 
undefinability in set theory.  



Gödel’s two notions of definability 

•  Two canonical inner models: 
– Constructible sets 
• Model of ZFC 
• Model of GCH 
• Definable  

– Hereditarily ordinal definable sets 
• Model of ZFC 
• CH? – independent  
• Definable    (Levy Reflection) 



Constructibility 

•  Constructible sets (L): 



Ordinal definability 

•  Hereditarily ordinal definable sets (HOD): 
•  Take the ordinals as primitive terms.  
– A set is ordinal definable if it is of the form  

{a : φ(a,α1,…, αn)} 
where φ(x,y1,…, yn) is a first order formula of set theory. 
– A set is hereditarily ordinal definable if it and all 

elements of its transitive closure are ordinal definable.  



• Myhill-Scott: Hereditarily ordinal definable 
sets (HOD) can be seen as the constructible 
hierarchy based on second order logic (in place 
of first order logic):  



•  Myhill-Scott: Use the real power set operation in 
your definitions. (I.e. the one in V.) 

•  Chang considered a similar construction with the 
infinitary logic Lω1ω1 in place of first order logic.  

But this does not satisfy choice (if we assume 
uncountably many measurable cardinals). It is not 
a fragment of SOL (for cardinality reasons: SOL 
has only countable many formulas, whereas in the  
Chang model you can define any countable 
structure). 



C(L*) 

•  L* any logic. We define C(L*): 

•  C(L*) = the union of all L´α 



•  If V=L, then V=HOD=Chang’s model=L. 
•  If there are uncountably many measurable 

cardinals then AC fails in the Chang model. 
(Kunen.)  



Joint work with M. Magidor and J. Väänänen 



Looking ahead: 

•  For a variety of logics C(L*)=L 
– Gödel’s L is very robust, not limited to first order 

logic 
•  For a variety of logics C(L*)=HOD 
– Gödel’s HOD is robust, not limited to second order 

logic 
•  For some logics C(L*) is a potentially 

interesting new inner model. 



Robustness of L 

• Q1xφ(x) {a : φ(a)} is uncountable 
•  C(L(Q1)) = L. 
•  In fact: C(L(Qα)) = L, where  
– Qαxφ(x)  |{a : φ(a)}| ≥ אα 

• Other logics, e.g.  
weak second order logic, ``absolute” logics, 

etc. 



Robustness of L (contd.) 

• A logic L* is absolute if  ``φ∈L*” is Σ1 in φ 
and ``M⊨φ” is Δ1 in M and φ in ZFC.   
– First order logic 
– Weak second order logic 
– L(Q0): ``there exists infinitely many 
– Finite fragments of  Lω1ω, L∞ω: infinitary logic  
– Finite fragments of  Lω1G, L∞G: game quantifier 

logic 



HOD: What Myhill-Scott really prove 

•  In second order logic L2 one can quantify  
 over arbitrary subsets of the domain. 
• A more general logic L2,F: in domain M can  
 quantifier only over subsets of cardinality κ  
 with F(κ) ≤ |M|. 
•  F any function, e.g. F(κ)=κ, κ+, 2κ, בκ, etc 



Theorem 

•  For all F: C(L2,F)=HOD 

•  Third, fourth order, etc logics give HOD. 
(Definability reasons) 



Observations: avoiding L 

• C(Lω1ω) = L(R) 
(every formula in lhs can be 

coded by a real; every real can 
be coded by a formula of lhs.) 
• C(L∞ω) = V (same as above, 

but for sets) 



Generalized Quantifiers 

•  Q1
MMxyφ(x,y) there is an uncountable X such that 

φ(a,b) for all a,b in X 
– Can express Suslinity of a tree. (No uncountable branches, 

no uncountable antichains) 
– Can be badly incompact; is countably compact (i.e. w.r.t.  

countable theories) if V=L. L-Skolem down to     .  
•  Q0

cfxyφ(x,y) {(a,b) : φ(a,b)} is a linear order of 
cofinality ω 
– Fully compact extension of first order logic. (Whatever the 

size of the vocabulary, if a theory of this logic is finitely 
consistent, then it is consistent.) L-Skolem down to       .  



•  aa logic, Hartig quantifier  
•  Cofinality was essential in Shelah’s provable 

results on size of the continuum.  
•  In CMT, both generalized quantifiers and 

infinitary languages have reemerged, due to 
work of Zilber and others. 



Theorems 

C(L(Q1
MM)) = L, assuming 0#.  

Why? If there is an uncountable homogeneous 
set in V (w.r.t. a definable relation) then there 
is one in L. Roughly follows from the fact that 
ω1 is weakly compact in L. 

So assuming large cardinals, L “reads” L(Q1
MM) 

as first order.   



   Consistent: C(L(Q1
MM))      L (forcing 

construction due to Jensen) 
6=



Theorems 

•  C(L(Q0
cf)) ≠ L, assuming 0#.  

•  Proof depends on: if α is regular in L and 
cofinality of α is >ω, we can express this in 
C(L(Q0

cf)). But then α belongs to the set of 
canonical indiscernibles, i.e we can define 0#  
in C(L(Q0

cf)). 



Theorems 

•  C(L(Q0
cf)) contains the Dodd-Jensen Core 

Model, same for the Härtig quantifier. (Härtig-
L “sees” the ultrafilter which generates the 
iterated mouse. From this we get the original 
mouse. So all mice all present.) 

•  C(L(Q0
cf)) contains Lµ, if Lµ exists.  Uses 

Dodd-Jensen Covering Lemma. 



More theorems 

•  If V=C(L(Q0
cf)) then continuum is at most ω2, 

and there are no measurable cardinals.  



Proof : V=C(L(Q0
cf)) implies continuum is at 
most ω2.  

•  Condensation argument. 
•  If r is a real, then r is in some   X       C(L(Q0

cf)) 
such that X ``knows” about cofinality ω. Need 
witnesses both for cofinality ω and for cofinality 
greater than ω. In latter case we change the higher 
cofinalities to cofinality ω1 by a chain argument.    

•  X then has cardinality ω1.  
•  Then X isom. to L´α for some α, α<ω2 
•  Thus there are at most ω2 reals. 
•  Consistently: exactly ω2 reals.  



A real is always constructed on levels of rank 
less than ω2. 



V=C(L(Q0
cf)) implies that there are no 

measurable cardinals.  
•  Suppose i:VM, κ first ordinal moved, M closed under 
κ-sequences. 

•  (C(L(Q0
cf))M=C(L(Q0

cf)), since M and V have the same 
ω-cofinal ordinals (since they have the same ω-
sequences). 

•  So M=V. 
•  i:VV, κ first ordinal moved 
•  Contradiction! (By Kunen.) 
•  This is like same proof for V=L. 
•  Smaller large cardinals are consistent with V=L, hence 

with V=C(L(Q0
cf)).  



More theorems 

If there is a Woodin cardinal, then ω1 is 
inaccessible in C(L(Q0

cf)). (Stationary tower 
forcing. Gives an embedding into a model 
which is closed under ω sequences, moving ω1 
to the Woodin cardinal. Then (C(L(Q0

cf))M 

=(C(L(Q<λ
cf))V. 

Actually Mahlo.  





Generic absoluteness 

Suppose there is a proper class of Woodin 
cardinals. Then: 

•  Truth in C(L(Qα
cf))  is forcing absolute and 

independent of α. (Stationary tower forcing 
again.) 

•  Cardinals >ω1 are all indiscernible for  
 C(L(Q0

cf)). (Another STF.)   
•  Is CH true in C(L(Qα

cf))? This is forcing 
absolute and independent of α.  



elementarity

elementarity

elementarity



•  C(L(Q0
cf)) ≠ HOD if there are uncountably 

many measurable cardinals.  
There is some countable sequence which is not 

in C(L(Q0
cf)) , but can be chosen to be in 

HOD. 
(Like Kunen’s proof that uncountably many 

measurables imply failure of Axiom of Choice 
in the Chang Model (= C(Lω1ω1)). ) 

Avoiding HOD 



•  The passage from L to HOD involves one 
application of the power set operation to the 
underlying logic. 

• We wish to understand the intermediate 
idealizations involved.  



L=C(FOL) 

HOD=C(SOL) 

One	
  applica:on	
  
of	
  power-­‐set	
  

Hierarchy	
  of	
  
generalized	
  
quan:fiers.	
  



Semantic extensions of ZFC 

•  Replace FOL by an extension of it in the 
separation and replacement axioms of ZFC. 

•  Around L(Q0): exactly omega-standard models of 
ZFC. (Can define the standard natural numbers in 
the model.) Weak second order etc… 

•  Around L(Q0
MM): exactly transitive models of 

ZFC. (Can define well-foundedness.) 
•  Between Lω1ω and Lω1ω1: exactly countably 

closed transitive models of ZFC.   



Task: Reals 

Vary the logic in Kleene’s Ramified Analytic 
Hierarchy (Kleene 1959). 



Naturalizing content again 

• We have defined an equivalence relation on 
extensions of first order logic relative to an 
inner model construction.  

•  This seems to be a general method, i.e. 
applicable to various classes of logics relative 
to various structures. 



What “naturalize” means 

•  Look for heuristic principles rather than embed 
the problem into some suitable formal system. 

E.g.: “Content and extension stand in inverse 
proportion to eachother.” ---Kant; Port Royal 

(Bolzano: slogan does not stand up under criticism) 
•  We usually think of categoricity as indicating the 

presence of content (of the theory).  
•  Here we consider uniqueness relative to classes of 

logics, a different indication of content.   



Philosophy 

“The world shows up for us.” 
                                     ---Alva Noe 



Thank you! 


