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P

Natural numbers belong to the most commonly known mathematical entities and are stud-
ied and discussed from various angles. Philosophers, mathematicians, cognitive scientists and
computer scientists conduct research having for its aim a deeper understanding of these ob-
jects. e present conference ‘Numbers and Truth’ will contribute to these efforts.

Within recent philosophy ofmathematics a couple of competitive philosophical schools came
to the foreground; importantly, structuralism and neo-Fregeanism. Both of them espouse re-
alism about mathematical objects: these objects exist independently of our minds. In addition,
both espouse realism about truth: arithmetical sentences have objective truth values. In this
context a natural question arises whether theories of arithmetical truth provide us a beer un-
derstanding of what natural numbers are. What is the relation between a choice of a particular
truth theory for arithmetical language and one’s overall standpoint in the philosophy of math-
ematics, or maybe even one’s preferred way of doing mathematics? On a general level, the aim
of the conference is to address issues of this sort.

Invited speakers: Martin Fischer, VolkerHalbach, LeonHorsten, Richard Kaye, Juliee Kennedy,
Roman Kossak, Rafał Urbaniak, Albert Visser, Sean Walsh, Konrad Zdanowski.

Contributed speakers: Walter Dean, Hidenori Kurokawa, Graham E. Leigh, Edoardo Rivello,
Andrea Strollo, Shunsuke Yatabe.
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T

F, 19 O

• 13:30-14:30 Welcome/Registration/Coffee

• 14:30-15:30 Leon Horsten: Truth, conditionals, and paradox

• 15:45-16:45 Juliee Kennedy: Change the logic, change the meaning?

• 16:45-17:00 Coffee

• 17:00-17:45 Walter Dean and Hidenori Kurokawa: Numbers, constructive truth, and the
Kreisel-Goodman paradox

• 17:50-18:35 Andrea Strollo: e disentanglement of syntax from a model theoretic point of
view

• 18:40-19:25 Graham E. Leigh: A proof-theoretic account of classical principles of truth

• 20:00 Dinner at Restaurant Tara’s

S, 20 O

• 9:30-10:30 Roman Kossak: Model theory of satisfaction classes

• 10:30-11:00 Coffee

• 11:00-12:00 Albert Visser: Degrees of interpretability of finitely axiomatized sequential
theories

• 12:15-13:15 Richard Kaye: Adding standardness to nonstandard models

• 13:15-14:30 Lunch

• 14:30-15:30 Rafał Urbaniak: Neologicism: for real(s)?

• 15:45-16:45 Konrad Zdanowski: On notations systems for natural numbers and polynomial
time computations

• 16:45-17:15 Coffee

• 17:15-18:00 Shunsuke Yatabe: Yablo’s paradox and ω-inconsistency

• 18:15-19:00 Edoardo Rivello: Revision without ordinals

• 19:30 Dinner at Restaurant Familjen
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S, 21 O

• 9:30-10:30 Sean Walsh: Empiricism, probability, and knowledge of arithmetic

• 10:30-11:00 Coffee

• 11:00-12:00 Martin Fischer: Truth and Groundedness

• 12:15-13:15 Volker Halbach: Axiomatic and semantic approaches to truth

• 13:15-14:30 Lunch

• 14:30-16:30 Special session, Roman Kossak: Husserl’s philosophy of arithmetic, a discus-
sion
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P 

V

e conference will take place at the Department of Philosophy, Linguistics and eory of
Science, at Olof Wijksgatan 6, Göteborg.

e recommended hotel is Hotel Panorama, it is located at Eklandagatan 51-53. It is a short
10 minutes walk from the conference venue.

L  

Lunches and dinners will be free for speakers. Lunch will be served at the conference venue.
Dinner on Friday will be at Resturant Tara’s at Södra vägen 24, and on Saturday at Restaurant
Familjen at Arkivgatan 7.

W  

Wireless internet access will be available to all participants though a guest account on the
Wireless network with SSID GöteborgsUniversitet. e login is web-based. Eduroam will also
be available to everyone with the appropriate account.
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T  G

Martin Fischer
MCMP, Munich

At least since Kripke the notion of groundedness has played a major role in aempts to solving the
semantic paradoxes. In Kripke’s account the notion of groundedness is explicated via his fixed-point
construction and especially the minimal fixed-point. In Yablo’s terminology Kripke’s work is focused
on the inheritance aspect of groundedness and not on the dependence aspect.

In the talk I will present a variation of Kripke’s fixed-point construction that is a model for a theory
of truth and groundedness. e aim of this model is twofold: On the one hand it tries to capture the
structure of the fixed-points. On the other hand it provides a justification for a theory based on a quite
expressive language, a language containing not only a truth predicate but also a groundedness predicate.

e model is a fixed-point construction combined with a possible worlds model. e construction in
the talk is based on work carried out by Volker Halbach and Philip Welch as well as Johannes Stern. e
innovation of my construction is that in the end each possible world represents one possible fixed-point
which allows for an adequate representation of grounding.

e language LG is the language of arithmetic expanded by two one place predicates T,G. A model
M = (W,R, f) with W a set of worlds R an accessibility relation and f an evaluation function that
assigns to eachworld an extension of the truth predicate, i.e. a consistent set of sentences. e extension
of the groundedness predicate is dependent on the extension of the truth predicate. e extension ofG
at a world w will be the set of those sentences for which either they are true at all accessible worlds or
their negation is. With the help of the strong Kleene scheme it is possible to define a monotone jump
operator that guarantees the existence of a fixed-point. By starting with a suitable model the fixed-point
has some nice properties. Moreover in the closed-off versions some interesting theorems hold and point
to possible theories of truth and groundedness.

e talk will contain a discussion of the adequacy of themodel to capture our intuitions about ground-
edness and possible shortcomings. One of the advantages of the model is its flexibility to accommodate
different intuitions of grounding, for example following different evaluation schemes. Moreover we can
use the model to introduce further notions such as paradoxicality or intrinsically true.
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A    


Volker Halbach
University of Oxford

Axiomatic and semantic approaches can be found already in Tarski’s seminal work on formal theories
of truth. Syntactic or axiomatic principles have been used in order to evaluate, motivate, and justify
semantic definitions of truth; conversely, semantic constructions and analyses have been used for similar
purposes with respect to axiomatic approaches.

In the talk I will try to analyze the interplay between axiomatic and semantic theories of truth. In
particular, I will argue that Tarski’s rejection of axiomatic theories of truth is incoherent with his own
theory of truth.

Since Donald Davidson’s work on truth and meaning, it has oen been claimed that certain semantic
theories of truth can be captured by or rephrased in an axiomatic theory. I will try to analyze what this
could mean, not only for classical typed theories such as Tarski’s but also for type-free theories such as
Kripke’s.
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T, ,  

Leon Horsten
University of Bristol

Field takes Kripke’s theory of truth to be deficient in two ways:

1. Kripke’s theory does not make the unrestricted Tarski-biconditionals come out true

2. Kripke’s theory does not contain a real conditional

In order to address these problems, Field interleaves the Kripkean fixed point construction with a
revision construction in an ingenious way.

Yablo has proposed an alternative theory of truth and conditionals that has a uniform (Kripkean)
conceptual motivation. However, as Field pointed out, Yablo’s theory does not give a sensible account
of embedded conditionals.

In my talk, I want to elaborate Yablo’s suggestion in a way that enables embedded conditionals to be
treated in a more satisfactory manner.
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A   


Richard W. Kaye
University of Birmingham

If M is a nonstandard model of PA, the set of standard natural numbers ω = {0, 1, 2, . . .} forms an
initial segment ofM in a canonical way. It therefore makes sense to look at the model (M,ω) formed
by adding a predicate for ω to M . Model theory of (M,ω) is rather hard. Such structures encode
a number of very difficult questions in second order number theory (analysis), including many open
ones. However some aempt can be made to understand (M,ω) relative to second order schemes of
arithmetic.

e talk will touch on three related questions: what can one interpret or define in (M,ω) that cannot
be defined inM ; what is the theory of structures such as (M,ω); and what reals are coded in the model
(M,ω)?

In terms of definability and interpretability, structures (M,ω) interpret ω-models of second order
arithmetic, and also under certain circumstances define truth predicates for submodels of M . us
second order systems motivate this work on structures (M,ω). It turns out that the truth predicate has
useful applications and some details of how it arises will be given.

In terms of the theory, the Henkin-Orey theorem on ω-logic tells us about the theory of all models
(M,ω) (i.e. the statements true in all such models) but tells us lile about the theory of any specific
model. In fact the theory of (M,ω) depends on structural properties ofM that are not first order, and
so there is a wide range of possibilities for the theory of (M,ω), even for a given completion T of PA. It
is perhaps surprising therefore that given a complete theory T extending PA there is a canonical choice
for a theory (M,ω) of someM |= T . More surprisingly, this is not hard to prove. We will discuss a
few consequences of this result, and further applications of the truth predicates available in (M,ω)will
be given.

In a difficult paper in the JSL, Kanovei characterised the Sco sets Rep(M,ω) of subsets of ω that are
0-definable in (M,ω), whenM is a model of true arithmetic. A similar characterisation of the standard
system SSy(M,ω) of (M,ω) (i.e. such definable sets, where parameters are allowed from M ) is not
known. We will conclude with some results and observations on these standard systems, with some
open problems for future work.

Much of this is joint work with Roman Kossak and Tin Lok Wong.
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C  ,   ?

Juliee Kennedy
University of Helsinki

In his 1946 Princeton Bicentennial Lecture Gödel suggested the problem of finding a notion of defin-
ability for set theory which is ”formalism free” in a sense similar to the notion of computable function
— a notion which is very robust with respect to its various associated formalisms. One way to interpret
this suggestion is to consider standard notions of definability in set theory, which are usually built over
first order logic, and change the underlying logic. We show that constructibility is not very sensitive
to the underlying logic, and the same goes for hereditary ordinal definability (or HOD). We observe
that under an extensional notion of meaning for set theoretic discourse, ine’s Dictum ”change of
logic implies change of meaning” is only partially true. is is joint work with Menachem Magidor and
Jouko Väänänen.
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M    

Roman Kossak
City University of New York

All countable recursively saturatedmodels of PeanoArithmetic have nonstandard satisfaction classes.
In fact, each suchmodel has a great variety of nonstandard satisfaction classes. I will surveymodel theo-
retic techniques that can be applied to construct many different inductive satisfaction classes, and I will
show how, in return, inductive satisfaction classes are used to prove important result about recursively
saturated models of PA. I will also pose an open problem concerning a possible converse to Tarski’s
undefinability of truth theorem.
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N:  ()?

Rafał Urbaniak
University of Gdańsk
Ghent University
Trinity College Dublin

Neologicism to be successful should provide foundations not only for natural number arithmetic,
but also for other mathematical theories, like real number theory (RNT). e search for appropriate
abstraction principles is tricky. ey should be strong enough to give the desired theory, not strong
enough to prove undesired claims and (last but not least) provide basis for a philosophically acceptable
story about RNT. I will survey existing aempts of developing neologicist foundations of RNT, evaluate
them and try to improve on them.
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D    
  

Albert Visser
Utrecht University

Finitely axiomatized sequential theories are something like a natural kind of theories. ey share a
lot of salient and important properties. Moreover, many familiar theories belong to this kind. Exam-
ples of finitely axiomatized sequential theories are the basic theory PA−, Buss’s theory S1

2, Elementary
Arithmetic EA, IΣ1, ACA0 and the Gödel-Bernays theory of sets and classes GB.

e study of interpretability degrees of a class of theories is important as the study of a notion of the
strength of a theory. For example the Observed Linearity of Reverse Mathematics only comes into focus
against the background of the result that the surrounding degree structure contains infinite anti-chains.

In this talk we give an introduction to the interpretability degrees of finitely axiomatized sequential
theories. We are especially interested in the question: how are the degrees of extensions (in the same
language) of a given theory embedded in the complete degree structure? We will briefly look at the case
of a non-sequential theory, to wit: Robinson’s Arithmetic Q. is case shows interesting similarities and
differences with the sequential one.

As we will see arithmetical theories play a central role in the study of the interpretability degrees
of finitely axiomatized sequential theories. is is already visible in the classical result that each such
degree contains an arithmetical theory.
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E, ,   


Sean Walsh
University of California, Irvine

In this talk, the tenability of extending arithmetical knowledge by way of confirmation is examined,
where the relevant notion of confirmation is understood probabilistically in the manner familiar from
Bayesianism. e motivation here is to see what can be said for a pre-Fregean view to the effect that
mathematical induction– one of the Peano axioms– is akin to enumerative induction in certain of its
epistemic features. I will focus on one ostensible problem with this view, namely that from certain
perspectives the arithmetical probabilities in question seem just as intractable as arithmetical truth
itself, either because of the inherent complexity of the probabilities in question as measured by the
methods of computability theory, or because the most obvious examples of arithmetical probabilities in
this sense are counting measures and hence in essence are just weighted averages of arithmetical truths.
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O     
   

Konrad Zdanowski
Cardinal Stefan Wyszyński University, Warsaw

We have many notational systems for denoting natural numbers: unary, binary, decimal, p-adic,
residues modulo a given sequence of numbers and many others. Indeed, different notations may be
well suited for different purposes. Also the structure of a computing device that one uses may favour
one notation system over the other one (e.g. computing in a modulo residues notation is well suited for
parallel computations).

us, there is not a single “best” notation. However, we can investigate the set of all possible notations
for natural numbers and investigate their general properties. In the talk I will show that the decimal
notation (or, rather, its equivalence class) is a maximal notation in a certain natural ordering between
feasible notations.

During the second part, I will talk about polynomial time recursion schemes for the notation for
hereditarily finite sets in a style of Bellantoni and Cook (which is a work in progress).
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N,  ,  
KG 

Walter Dean
University of Warwick

Hidenori Kurokawa
City University of New York

e historical development of intuitionism is oen presented, at least in part, as a reaction to the set
theoretic paradoxes. For instance, it was in light of Richard’s Paradox that Poincaré originally proposed
that predicative restrictions be imposed on set existence, a reaction which Bouwer [3] would also later
articulate. But considerably less aention has been paid to the status of the semantic paradoxes, such as
the Liar or Curry’s Paradox, in regard to intuitionism. is is in some sense unexpected, however, since
many expositors (e.g. Dumme [6], Prawitz [13]) have suggested that the notion of truth or validity
relevant to constructive mathematics should be understood to satisfy a principle of the form

(1) A↔ ∃p(p is a constructive proof of A)

As an aempt to characterize a conception of truth, however, (1) immediately stands out in virtue
of its similarity to the T-schema (i.e. A ↔ Tr(⌜A⌝)), the adjunction of which to formal arithmetic
leads to Tarski’s formalized version of the Liar Paradox. Although this result is commonly cited as a
fundamental antinomy of the naive conception of truth, it need not be taken as a truly mathematical
antinomy. For instance, we may conclude along with Tarski that it merely shows that no sufficiently
expressive mathematical language can be semantically closed (i.e. capable of expressing its own truth
predicate).

On the other hand, a variety of proof theoretic techniques (e.g. Kleene realizability, the Curry-Howard
correspondence) can be understood as aempting to analyze the notion of constructive proof so as to
make good on the intention expressed by (1). Inasmuch as these are developments within constructive
mathematics, one might reasonably fear that the adoption of (1) will lead to a paradox not just of the
“naive” notion of constructive truth (which, at least prima facie, one might think was also unanalyzable
within a sufficiently expressive intuitionstic object language), but of constructive mathematics itself.
(For since familiar meta-mathematical results like the Diagonal Lemma are derivable intuitionistically,
one might think that a formal analysis of proof which validated (1) would lapse into inconsistency in
the same manner as the Liar.)

Although such a concern has occasionally been voiced explicitly (e.g. [14]), a more common reaction
among intuitionists is to deny that a formalized version of (1) should be accepted relative to an appro-
priate understanding of the intuitionistic connectives. For instance, Beeson [2] remarks that to accept
the le-to-right direction of (1) is to acknowledge that there is a fixed universe of proofs to which the
constructive existential quantifier may be meaningfully applied. And to do so seems counter to the

19



traditional observation that the notion of constructive provability ought to be regarded as open-ended
or “indefinitely extensible”.

Note, however, that if we write P (⌜A⌝) to express “there exists a constructive proof of A”, the fol-
lowing principle still seem unobjectionable:

(T) P (⌜A⌝) → A

(Nec) If ⊢Z A, then ⊢Z P (⌜A⌝)

Relative to the intuitionistic interpretation of the existential quantifier, T records the fact that if we
possess a constructive proof p ofA, we can conclude thatA is true simply by examining p itself. On the
other hand, when Z is taken to subsume some intuitionistic formal system such as Heyting Arithmetic
(HA) together with T, then Nec reflects the fact that formal derivability within such a system, while not
necessarily exhausting constructive provability, is at least faithful to basic constructive principles.

As benign as these principles may seem, the system consisting of Z, T, and Nec can be shown to be
inconsistent by the following intuitionistically valid derivation:

(2) i) ⊢Z D ↔ ¬P (⌜D⌝) Diagonal Lemma for Z
ii) ⊢Z P (⌜D⌝) → D T
iii) ⊢Z ¬P (⌜D⌝) i), ii)
iv) ⊢Z D i), iii)
v) ⊢Z P (⌜D⌝) Nec, iv)
vi) ⊢Z ⊥ iii), v)

is derivation was first presented by Myhill [12] in the context of discussing the concept of “absolute”
provability in light of Gödel’s proposal that the Heyting (or “BHK”) interpretation of the intuitionistic
connectives can be formalized by an embedding into the modal logic S4 – an observation which serves
as the basis of Leitgeb’s [11] dubbing of (2) as the “Provability Liar”.

Our first goal in this note will be to illustrate how consistency concerns closely related to the Prov-
ability Liar arose independently within another significant (but less well known) investigation of the
Heyting interpretation – namely, the so-called eory of Constructions (C), originally formulated by
Kreisel [10], and further refined by Goodman [8], [9]. More generally, however, our aim will be to
suggest that this system and its intended interpretation are of contemporary interest in light of the
following observations:

I) e Provability Liar is prototypical of a class of inconsistency results wherein the le-to-right
direction of the T-schema is dropped in favor of a family of principles (of which Nec is paradig-
matic) which allow for the internalization of reasoning carried out within a formal theory of truth
or provability.1 When reconstructed in a theory such as C, it is possible to discern additional log-
ical structure in the use of Nec, thus opening new avenues for responding to paradoxes in this
family.

II) Traditional treatments of self-referential truth and provability typically proceed through an ex-
plicit arithmetization of syntax, performed over a background theory such as PA or HA. However,
Goodman’s goal was to show that the meaning of the intuitionistic connectives themselves could
be analyzed in a yet more primitive formalism which is intended to be “type- and logic-free”. us
rather than starting from an arithmetical base system, C is developed by adding a proof operator

1is includes several of similar inconsistency results reported by Friedman and Sheard [7], as well as the so-called
ω-inconsistency theorem of McGee.
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π to pure combinatory logic (or equivalently – and as we shall present it here – untyped lambda
calculus). As was first observed in the formulation of the Curry Paradox [4], self-reference arises
in this seing without arithmetization due to the existence of so-called fixed point combinators.
Since an appropriate analogue of Nec is a derivable rule of Goodman’s system, a contradiction
follows by assuming that the proof-theorem relation is decidable, in conjunction with a version of
the reflection principle T.

III) Goodman also proposed a means of interpreting HA within a variant of C in which constructions
are stratified into so-called grasped domains. is approach is motivated by concerns arising from
the Provability Liar about the surveyablity of the class of all constructive proofs. is development
is also of interest because it inverts the traditional order of analysis employed in formal treatments
of truth and provability – i.e. rather than using a number theoretic language to formulate a truth or
provability predicate by arithmetization, Goodman suggests that it is possible to define the natural
numbers in terms of putatively more fundamental principles about the combinatory structure of
constructive proofs.

Wewill nowproceed by sketching a streamlined version of the Provability Liar in C, and the rudiments of
Goodman’s proposed interpretation of arithmetic. Wewill then briefly record some additional questions
which we will explore more fully in the sequel.

T  C   KG P

C can be most simply presented as an equational calculus (with identity ≡) consisting of variables
x, y, z, . . . intended to denote constructive proofs as well as symbols for the operators required to for-
malize the Heyting interpretation. Among these are a function abstraction operator (λ), and pairing and
projection operators D,D1, D2 such that Dxy denotes the pair xy and Di(x1x2) = xi. Additionally,
we introduce constant symbols ⊤,⊥ to denote truth and falsity, the traditional combinator Kxy = x,
and also a primitive binary proof operator π with intended interpretation

(3) πuv ≡ ⊤ just in case v is a proof that uz ≡ ⊤ for all z

On the intended interpretation of C, πuv ≡ ⊤ is understood to be decidable. is reflects the traditional
intuition that we ought to be able to determine by inspection whether v is a proof that u is satisfied by
z.2

e foregoing stipulation has a significant consequence for the formalization of the proof condition
assigned to intuitionistic implication – i.e. a proof of φ→ ψ consists of a construction x such that if z is
a proof φ then xz is proof of ψ, together with a proof which verifies that this construction always works.
As the laer statement is itself a conditional, this analysis might at first be understood as providing a
circular characterization of intuitionistic implication. However, on the assumption that v is a proof of φ
corresponds to a decidable statement, it is possible to render this conditional as

(φ→ ψ)∗ = λxy.π(π(φ∗)x ⊃1 λz.π(ψ
∗)x(D2yz))(D1y)

where⊃1 denotes classical implication3 and (·)∗ denotes Goodman’s proposed embedding of intuition-
istic logic into C.

2In both form and motivation, πuv ≡ ⊤ can thus be compared to statements of the form Proof(n, ⌜φ(x)⌝)where
Proof(x, y) is a standard arithmetical proof predicate.

3If we take ⊤ =df λxy.x and ⊥ =df λxy.y, then such an connective is definable is C as λxyz.xzy(λw.⊤)z.
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Now note that within C it is possible to formalize

(4) w does not prove that yz ≡ ⊤
as (πy ⊃1 (λx.⊥))w ≡ ⊤. If we now let h =df π(π(y ⊃1 λx.⊥))(zz) then hyz ≡ ⊤ asserts that zz
is defined and is a proof that (4) is unprovable. A self-referential statement about provability may now
be obtained by considering the fixed-point combinator a =df λz.(λy.h(yy)z)(λy.h(yy)z) and noting
that ⊢ az ≡ haz – i.e. the statement

(5) az ≡ ⊤
holds just in case zz is a proof that no x is a proof of (5). If we understand ⊥ ≡ ⊤ to express a
contradiction in C, then the following rules which are respectively intended to formalize the decidability
(i.e. truth evaluabilty) of πuv and what we will refer to as an explicit reflection principle – i.e. that the
existence of a specific proof of a statement, entails its truth:

(Dec) If πuv ≡ ⊤ ⊢ ⊥ ≡ ⊤, then ⊢ πuv ≡ ⊥ (ExpRe) πuv ≡ ⊤ ⊢ uz ≡ ⊤
It may also be shown the C has the ability to internalized its own proofs in the sense that

(Int) If ⊢ u ≡ ⊤, then there exists some construction v such that ⊢ πuv ≡ ⊤.

is a derivable principle in which the term v may be constructed from the proof of u ≡ ⊤ in C.
e Kreisel-Goodman Paradox corresponds to the following derivation in C (we present a parallel

derivation in the arithmetical system Z as a gloss):

i) ⊢ az ≡ haz defn. of a ⊢ A↔ P (⌜¬P (⌜A⌝)⌝) Diag. Lemma
ii) π(az)x ≡ ⊤ ⊢ az ≡ ⊤ ExpRef P (⌜A⌝)⊢ A T
iii) π(az)x ≡ ⊤ ⊢ haz ≡ ⊤ P (⌜A⌝)⊢ P (⌜¬P (⌜A⌝)⌝)
iv) π(az)x ≡ ⊤ ⊢ π(π(az) ⊃1 (K⊥))(zz) ≡ ⊤ defn. of h
v) π(az)x ≡ ⊤ ⊢ (π(az) ⊃1 (K⊥))w ≡ ⊤ ExpRef
vi) π(az)x ≡ ⊤ ⊢ (K⊥)w ≡ ⊤ P (⌜A⌝)⊢ ¬P (⌜A⌝)
vii) π(az)x ≡ ⊤ ⊢ ⊤ ≡ ⊥
viii) ⊢ π(az)x ≡ ⊥ Dec ⊢ ¬P (⌜A⌝)
ix) ⊢ (π(az) ⊃1 (K⊥))x ≡ ⊤ defn. ⊃1

x) ⊢ π(π(az) ⊃1 (K⊥))fx ≡ ⊤ Int ⊢ P (⌜¬P (⌜A⌝)⌝) Nec
xi) ⊢ π(π(az) ⊃1 (K⊥))ff ≡ ⊤ subst. for f for x
xii) ⊢ haf ≡ ⊤ defn. of h
xiii) ⊢ af ≡ ⊤ defn. of a ⊢ A
xiv) ⊢ π(af)b ≡ ⊤ Int ⊢ P (⌜A⌝) Nec

As x and z are free at line vii), a contradiction now follows from lines viii) and xiv).
Goodman proposed to resolve the paradox by replacing C with a theory C∗ in which axioms are

adopted which aempt to formalize the stratification of constructions into a cumulative hierarchy
L0, L1, . . . such that Li+1 is formed by reflecting on the operation of constructions available at Li

and seeing that they are defined on all of their arguments. But he also asserts that it is not in keeping
with constructive principles to assume that we “understand the notion of proof in an absolute sense . . .
[so as to] visualize the entire constructive universe” [9], p. 14. On this basis he introduces a ternary
proof operator πxyz ≡ ⊤ which receives the intended interpretation x is a grasped domain containing
y and z is a proof that yw ≡ ⊤ for all w in x. If we now aempt to reformulate the paradox using
such an operator, we must assume that there is a level n in which the proof corresponding to the outer
occurrence of π at step iv) inhabits. However, Goodman asserts that the inference from x) to xi) will
now be unjustified as the term f constructed by internalizing the prior steps will be of level n+ 1.
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I H A

e availability of a pairing operator on proofs is explicit in the Heyting interpretation – e.g. a proof
of a conjunction φ ∧ ψ is stipulated to be a pair of constructions xy such that x is a proof of φ and y
is a proof of ψ. Goodman proposes that a pairing operator can be used to provide a definition of the
natural numbers as follows: 0 is interpreted as the combinator K and if n is interpreted as a construction
u, then n + 1 is interpreted as the pair D(Ku). On this basis, he shows how to formulate a decidable
natural number predicate in C∗ for which an appropriate induction rule holds. e interpretation of HA
itself is accomplished by using C∗ to analyze the logical connectives in accordance with the Heyting
interpretation. (We postpone the details.)

S 

1) Goodman’s proposed means of responding to the Provability Liar is in some sense reminiscent of
typed theories of truth in the style of Tarski’s hierarchy of metalanguages. In particular, Goodman
stresses that his proposed stratification of constructions is one not of logical type, but rather one
about the subject maer of mathematical proofs. Is an approach which splits the “naive” notion of
constructive provability into levels more plausible than proposals which make a similar distinction
about the “level” at a which a sentence may be asserted to be true in the classical seing? How
does this approach compare to Anderson’s [1] resolution of the structurally similar Paradox of the
Knower based on a hierarchy of knowledge predicates?

2) By treating proofs as freestanding objects, theories like C refine approaches which represent truth
or provability as a predicate. However, C does not explicitly represent the quantifier over proofs
expressed by (1) or (implicitly) in the fixed point statement which appears in the Provability Liar.
What first-order principles about proofs are subsumed by C and C∗? How do these principles figure
in the construction of the terms f and b which figure in the derivation of the Kreisel-Goodman
Paradox? Can such principles be used to make precise the intuition that the notion of constructive
proof is indefinitely extensible?

3) Goodman’s embedding of HA into C∗ is one of several methods which have been proposed for in-
terpreting first-order logic and arithmetic in combinatory logic. Although the Curry Paradox was
originally presented using such a theory, systems of this sort also share an important affinity with
formalism in the philosophy of mathematics (e.g. in the sense developed by Curry in [5]) in that they
seek to analyze numerical and logical notions in terms of purely combinatory ones. As systems of
combinatory logic are oen presented as uninterpreted, it seems misleading to describe them as tak-
ing for a granted a substantial notion of truth (e.g. truth in the standard model). What, then, should
be said about the conceptual significance of formal inconsistency results like the Provability Liar in
this seing? And what does this tell us more generally about the relationship between arithmetic,
truth, and self-reference?
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A    
  

Graham E. Leigh
University of Oxford

In the analysis of truth it is oen logic that is blamed for the truth-theoretic paradoxes. It is well
known that compositionality and self-referentiality do not mix well in a purely classical environment,
so logics weaker than classical logic have been suggested for the truth predicate. ese typically involve
moving to partial or paraconsistent logics (see for example [3, 6]). Compared with classical logic, such
logics are not well understood, and as Feferman observes, it is questionable whether “[anything] like
sustained ordinary reasoning can be carried [out in them]” [2, p. 95]. In this paper we seek to explore
more deeply the interface between principles of self-applicable truth and classical logic, in particular
the rôle classical principles play in restricting the free use of truth principles. We propose to do this by
analysing various axiomatisations of truth over intuitionistic logic.

Intuitionistic logic has not received much aention to date from the truth theory community, but it
does have a number of virtues. As a logic uponwhich to study the effect of classical reasoning, it is beer
suited than other weakenings of classical logic because of its mature model theory and proof theory.
is means that consistency and conservativeness results for truth can be easily interpreted outside the
field of theories of truth (for example in set theory or second order analysis) as they can with a classical
base theory. It also provides a firm base on which to study constructive interpretations of truth. Of
course few authors, if any, believe that truth is inherently constructive. But since an axiomatic theory
of truth can provide at best only an approximation for “real” truth, it is natural at least not to rule out
constructive formulations.

e analysis we present is inspired by the work of Friedman and Sheard [4]. ere the authors
determine the consistency of all subsets of a collection of twelve principles of truth over a classical base
theory. e outcome is nine maximal consistent theories of truth. Subsequent work by Cantini [1],
Halbach [5] and Leigh and Rathjen [8] establish the proof-theoretic strength of each of these theories
showing they range from conservative extensions of Peano arithmetic to the strength of one inductive
definition, ID1. ese results are summarised in table 2 below. Beginning with [7] the work has been
transferred to intuitionistic logic. It is shown that some of the inconsistencies noted in [4] can be
aributed to classical principles inherent in the base theory, the law of excluded middle or the statement
that the logic under the truth predicate is classical. Moreover, these sets of principles turn out to be
consistent over a purely intuitionistic base theory. For example, over the classical base theory utilised
in [4], the principles T(A ∨B) → TA ∨ TB and TA ∨ T(¬A) (stated for arbitrary sentences A, B)
are equivalent; nevertheless, there are models of the intuitionistic base theory that satisfy the former
but refute the laer principle. In fact, the former axiom is consistent with all consistent sets of truth
principles and the laer is inconsistent with roughly half. e upshot is that although there are still
exactly nine maximal consistent sets of principles over the new base theory, reverting to intuitionistic
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logic provides more freedom to express principles of truth while avoiding the pitfalls of inconsistency.
In the present paper we discuss the proof-theoretic analysis of the induced maximal consistent the-

ories. Four of the theories remain sub-theories of their classical counterparts. e other theories are
inconsistent with either the law of excluded middle or the principle of a classical truth predicate (or
both). Upper bounds on their proof-theoretic strength do not, therefore, immediately result from the
analysis of their classical cousins and a more refined analysis is required.

We denote by LT the language of arithmetic, L, extended to include a unary predicate T. HAT is
Heyting arithmetic formulated in LT, that is with the schema of induction extended to formulæ of LT,
likewise PAT. If S is a classical theory we denote by Si the appropriate theory based on intuitionistic
logic. Let ⌜.⌝ denote some fixed primitive recursive Gödel coding of LT. ough not essential for the
present work, it is convenient to assume that ⌜.⌝ is total, i.e. every number is the code of some formula
of LT. Usual conventions apply to the arithmetisation of syntax that should be clear from the context
in which they occur.

e base theory of truth we consider, called BaseiT, extends HAT by the three axioms

1. ∀x∀y(Tx ∧ T(x→. y) → Ty),
2. ∀x(vali(x) → Tx),
3. ∀x(AxPRA(x) → Tx).

Here vali(x) expresses that x is the Gödel number of an intuitionistically valid first-order LT-sentence
and AxPRA(x) expresses that x is the Gödel number of the universal closure of a non-logical axiom of
primitive recursive arithmetic. e classical base theory of [4] and [8], called BaseT, is obtained from
BaseiT by adding the law of excluded middle and the principles ∀⌜A⌝T(⌜A ∨ ¬A⌝) stating that the
underlying logic of the predicate T is classical. us BaseiT should be viewed as a natural base theory
for the study of theories of truth over intuitionistic logic; it is a conservative extension of Heyting
arithmetic and its only truth-theoretic commitments are that the collection of statements provably true
is closed under modus ponens and comprises intuitionistic IΣ1.

Two theories are said to be proof-theoretically equivalent if they share the same theorems of L and,
moreover, that this fact can be established within HA. We say a theory has proof-theoretic ordinal α if
it is proof-theoretically equivalent to either HA + TI(<α) or PA + TI(<α) where TI(<α) represents
the schema of transfinite induction on initial segments of (a natural representation o) α.

Name Axiom Name Axiom
Rep TA→ TTA Cons ¬(TA ∧ T¬A)
Del TTA→ TA Comp TA ∨ T¬A
∀-Inf ∀xTA(ẋ) → T(∀xA) ∨-Inf T(A ∨B) → TA ∨ TB
∃-Inf T(∃xA) → ∃x TA(ẋ) →-Inf (TA→ TB) → T(A→ B)

Name Axiom Schema Name Rule of inference
In A→ TA Intro From A infer TA
Out TA→ A Elim From TA infer A

¬Intro From ¬A infer ¬TA
¬Elim From ¬TA infer ¬A.

Table 1: Table of truth-theoretic principles
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Table 1 shows the fieen principles of truth considered in [4] and [7]. For presentation purposes these
principles are given in shorthand and should be read in the usual more general formulation universally
quantified with parameters (where applicable). For instance, the axiom schema A → TA should be
read as the schema A(x0, x1, . . . , xn) → T⌜A(ẋ0, ẋ1, . . . , ẋn)⌝ for each formula A of LT with at most
x0, . . . , xn free.

e following theorem outlines the known results regarding sets of principles over BaseT.

eorem 1. Table 2 presents the complete list of maximal consistent sets of principles from table 1 over
BaseT with theories that are proof-theoretically equivalent alongside. e axioms Comp(w), ∨-Inf and
→-Inf are omied from the list as they are all equivalent to Comp over BaseT.

Maximal consistent set Equivalent theories
∀. In, Intro, Rep, Del, Comp, ¬Elim, ∀-Inf, ∃-Inf. PA
B. Rep, Cons, Comp, ∀-Inf, ∃-Inf. ACA, PA + TI(<ϵϵ0)
C. Del, Cons, Comp, ∀-Inf, ∃-Inf. ACA, PA + TI(<ϵϵ0)
D. Intro, Elim, Cons, Comp, ¬Intro, ¬Elim, ∀-Inf, ∃-Inf. ACA+

0 , PA + TI(<φ20), RA<ω

∃. Intro, Elim, Del, Cons, ¬Intro, ∀-Inf. Σ1
1-DC0, ID∗

1, PA + TI(<φω0)
F. Intro, Elim, Del, ¬Elim, ∀-Inf. Σ1

1-DC0, ID∗
1, PA + TI(<φω0)

G. Intro, Elim, Rep, ¬Elim, ∀-Inf. ACA+
0 , PA + TI(<φ20)

H. Out, Elim, Del, Rep, Cons, ¬Intro, ∀-Inf. ID1, KPω, PA + TI(<ϑϵΩ+1)

I. Rep, Del, Elim, ¬Elim, ∀-Inf. ACA+
0 , PA + TI(<φ20)

Table 2: Known results over classical logic

Isolation of the maximal consistent theories is due to Friedman and Sheard [4]. e proof-theoretic
analysis of theories D and H is provided by Halbach [5] and Cantini [1] respectively. A lower bound on
the strength of H is also present in [4]. e strength of the remaining seven theories is due to Leigh and
Rathjen [8].

e consistency of sets of truth principles overBaseiT has also been explored. Leigh and Rathjen, in [7],
classify all sets of truth principles as either consistent or inconsistent over BaseiT. e present work
completes the picture by determining the proof-theoretic strength of each resulting theory, outlined by
the next theorem.

eorem 2. Table 3 below lists all maximal consistent collections of the fieen principles from table 1
over BaseiT together with proof-theoretically equivalent theories. For space considerations obvious re-
dundancies in listing the axioms of each theory have been omied.

At first glance it may not seem surprising that each of the theories ∀i–Ii has the same proof-theoretic
ordinal as its classical cousin. Aer all, the only axioms lacking compared to the classical theories is the
law of excluded middle. e model construction used to verify consistency of the intuitionistic theories,
however, havemuch in commonwith the fixed point construction utilised by Feferman in the analysis of
KF, a theory whose intuitionistic formulation is a conservative extension of Heyting arithmetic. In the
hope of providing a clearer understanding as to why, in contrast with KF, the theories do not collapse,
we compare the ordinal analysis of Fi with that of F.

In [8] a classical sequent calculus F∞
m

α ∆ is defined into which F without Elim embeds and such

that the following soundness result holds: If F∞
m+1

α ∆ is derivable and ∆ consists of only formulæ in
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Maximal consistent set Equivalent theories
∀i. In, Intro, Rep, Del, Comp, ¬Elim, ∀-Inf, ∃-Inf. HA
Bi. Rep, Cons, Comp, ∀-Inf, ∃-Inf. ACA, PA + TI(<ϵϵ0)
Ci. Del, Cons, Comp, ∀-Inf, ∃-Inf. ACA, PA + TI(<ϵϵ0)
Di. Intro, Elim, Cons, Comp, ¬Intro, ¬Elim, ∀-Inf, ∃-Inf. ACA+

0 , PA + TI(<φ20), RA<ω

∃i. Intro, Elim, Del, Cons, ¬Intro, ∀-Inf, ∃-Inf, ∨-Inf. Σ1
1-DCi

0, HA + TI(<φω0)
Fi. Intro, Elim, Del, ¬Elim, ∀-Inf, ∃-Inf, Comp(w), ∨-Inf. Σ1

1-DCi
0, HA + TI(<φω0)

Gi. In, Elim, ∀-Inf, ∃-Inf, Comp(w), ∨-Inf, →-Inf. ACAi+
0 , HA + TI(<φ20)

Hi. Out, Rep, Cons, ∀-Inf, ∃-Inf, ∨-Inf. IDi
1, KPωi, HA + TI(<ϑϵΩ+1)

Ii. Rep, Del, Elim, ¬Elim, ∀-Inf, ∃-Inf, Comp(w), ∨-Inf. ACAi+
0 , HA + TI(<φ20)

Table 3: New results over intuitionistic logic

which the truth predicate occurs positively then some element of∆ becomes a true sentence if the truth
predicate is interpreted as the set of sentencesB for which F∞

m

φ(m+1)α
B is derivable, where φ repre-

sents the two-placed Veblen function. It is crucial for the soundness result above that the calculus enjoys
cut elimination, since then if F∞

m

α Ts is derivable, there is a derivation in which any sub-derivation
with the same rankm has the form F∞

m

γ Ts1, Ts2, . . . , Tsn. It follows that the consistency proof for F
can be formalised in ID∗

1, the sub-theory of ID1 in which proof by induction and the schema of induction
is only stated for formulæ that do not contain negative instances of other fixed point predicates. is
is because the properties required to establish that F is interpretable in the calculus F∞ , specifically
cut elimination and closure under Elim, are purely positive in their expression, being of the form “if
X is derivable in the sequent calculus, then so is Y”. It is known, however, that F cannot be embedded
into ID∗

1 by interpreting the truth predicate simply as membership of some positive inductive defini-
tion because the laer theory does not contain the full schema of induction, whereas the former theory
does. One would expect the study of F to offer some explanation as to why this is the case, but it is
surprisingly silent on the issue. Indeed it is only from the analysis of Fi, which is more involved, that
we begin to find some answers.

As with the analysis of F, the first step towards achieving an upper bound for Fi is to embed the
theory without the rule Elim into an infinitary sequent calculus. We thus define Γ ⇒m

α A according to
the usual rules for an infinitary version of HA together with rules representing each axiom of Fi and the
rule Intro, so that if A is a sentence derivable in Fi without using Elim and with at mostm applications
of Intro then ∅ ⇒m

ω A. To embed all theorems of Fi one needs to establish that the calculus admits the
rule Elim. e rule cannot be added directly to ⇒ because of its impact on cut elimination, a key factor
in obtaining the final interpretation into arithmetic.

e second step is to prove a soundness result similar to the one mentioned above. In this case we
cannot make do with analysing only T-positive derivations. e rules corresponding to Comp(w) and
the axiom T(A→ B)∧TA→ TB require negative occurrences of the truth predicate in their premises,
so unlike with F, it is not obvious that ⇒ permits the elimination of cuts. As such, to deduce the
admissibility of Elim in the context of Fi, a more general soundness result is required, one that applies
to derivations involving sequents with both positive and negative occurrences of the truth predicate.
e solution is to make use of asymmetric interpretations for truth to obtain an analogous soundness
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result. ese are formalised models in which positive and negative occurrences of the truth predicate
may have different interpretations. In this seing they take the following form.

Lemma. ere is a hierarchy of intuitionistic Kripke models (Fm
α | α < Γ0,m < ω) and normal

functions {fmα | m < ω} such that i) if Fm
α |= T⌜A⌝ then ∅ ⇒n

fm
α (0) A is derivable for some n < m; and

ii) if Γ ⇒m
α A is derivable and Γ ∪ {A} consists solely of atomic formulæ, then whenever Fm

γ satisfies
all elements in Γ, Fm

fm
α (γ) satisfies A.

For fmα we pick the function γ 7→ φm(γ + ωα); the model Fm
α is then defined to be a linear Kripke

ω-structure with two worlds. In the top world every sentence is considered true, while the second
world is defined so that (i) in the above lemma holds. erefore the rule Elim is admissible in ⇒ and
if Fi ⊢ A then the universal closure of A is derivable with finite m and height bounded by φω0. In
order to deduce that Fi is interpretable in HA+TI(<φω0) it is necessary to establish that the resources
required to prove lemma do not go beyondwhat is expressible in HA itself. us reference to the models
Fm
α must be removed in favour of arithmetically definable notions. is is possible because ⇒ enjoys

partial cut elimination, so any derivation of Γ ⇒m
α A satisfying the assumption of (ii) in the lemma has

a derivation involving atomic formulæ only.
e use of asymmetric interpretations appears essential. For if an interpretation is available in which

the truth predicate is directly replaced by a notion of derivability then it would be expected that Fi would
be interpretable in the intuitionistic version of ID∗

1. Since the laer theory is a conservative extension
of arithmetic this is impossible. One direction for future research is to determine an interpretation of
F into ID∗

1. We expect more success in this maer by looking at variants of the above asymmetric
interpretation rather than at direct interpretations motivated by the classical analysis.

A classical theory with proof-theoretic ordinal φω0 that retains its strength when transferred to
intuitionistic logic is the theory of Σ1

1 dependent choice (Σ1
1-DC0). It is reasonable to suppose there is

a correlation between this axiom schema and the theories F and Fi. us another avenue of interest is
to explore further connections between axiomatisations of truth and formulations of choice in second-
order analysis.
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R  

Edoardo Rivello
Scuola Normale Superiore, Pisa

Roughly speaking, semantic theories of Truth deal with the problem of constructing a model for a
given language together with an interpretation of the Truth-predicate for this language. To set things in
amore suitable way for a mathematical treatment we can assume— as it is oen the case in the literature
on this topic — that (1) a formalized first-order version of Peano Arithmetic (PA) plays the role of the
object language, (2) a self-referential Truth-predicate T is added to the language L of PA and applies to
sentences of the extended language L+ {T} and (3) the interpretation of T over the standard model of
PA has to be built up within Zermelo-Fraenkel (ZF) set theory (or within some weaker fragment of ZF).

Several semantic theories of self-referential Truth can be presented as systems of ordinal-length se-
quences of aempts to give an interpretation for the Truth-predicate. is strategy provides a general
mathematical framework in which different approaches to Truth can be fruitfully compared: for an anal-
ysis of this kind see Barba [1] where both constructions based on approximation sequences (as in Kripke
[6]) and constructions based on revision sequences (Gupta and Belnap [4] is the standard reference) are
covered.

While some knowledge of natural numbers seems to be unavoidable in inquiring about Truth — since,
at least, we need a theory of the syntax of the truth-bearers (sentences, in our seing) and this theory
comes to be equivalent to some weak form of arithmetic — the introduction of heavy set-theoretical
assumptions in the metatheory could be regarded as an unwelcome accident in a theory of Truth.

As a maer of fact, the approximation constructions can also be presented in an inductive style,
without any reference to the ordinals, so reducing the amount of set-theoretical notions needed in
the metalanguage (see Fiing [3] for a detailed treatment). Apparently, this possibility constitutes a
substantive difference between the approximation and the revision approaches: but it will be shown
that this is not the case.

From a result by McGee [8] we already know that, in inquiries about Truth for countable languages,
we can restrict ourselves to countable revision sequences. is fact suggests that it might be possible to
do the Revision eory without ordinals just by reducing ordinals to natural numbers via some index
notation for countable ordinals.

I will present here a different approach to this problem that directly shows that the mathematical
features of revision sequences that are relevant for the Revision eory of Truth can be implemented in
an ordinal-free seing — worked out in the Dedekind-Kuratowski tradition — as in the approximation
case.

is strategy of doing revision without ordinals can show its merits under several aspects:

• General motivations for eliminating the ordinals from some pieces of mathematics can be found
in Kuratowski [7]:

“Even though, sometimes, transfinite numbers [ordinals] can be shown to be fruit-
ful in making the exposition shorter or easier, the existence of a process that allows
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to avoid ordinals, in proving theorems that do not deal with the transfinite, is impor-
tant for the following two reasons: in reasoning about ordinals we implicitly appeal
to axioms that ensure their existence; but to weak the axioms system that we use in
proving something is desirable both from a logical and from a mathematical point
of view. Moreover, this strategy expunges from the arguments the unnecessary ele-
ments, increasing their aesthetic value.4”

• Our ordinal-free presentation of the Revision eory of Truth, together with Fiing’s ordinal-
free exposition of Kripke’s theory, provides a framework in which to compare approximation
and revision approaches to Truth that constitutes an alternative to Barba’s analysis based on
ordinal-length sequences.

• An ordinal-free presentation makes easier to evaluate how the Revision eory of Truth is sen-
sitive to its underlying set theory: both in order to minimise the set-theoretical assumptions
taken from the Zermelo-Fraenkel axiomatization and in order to explore the possibility of doing
revision also in alternative set theories.

• Avoiding ordinalsmay help in facing the problem of liing the revision-theoretical approach from
“toy” object languages like arithmetic to more complex languages, since the entire set-theoretical
process of revision can be recast in higher-order logical terms.

• e ordinal-free approach to the Revision eory of Truth might be shown valuable also from a
heuristic point of view, helping to focus our aention on the intrinsic circularities exhibited by
the concept of Truth rather than on the redundancies introduced in the analysis by the transfinite
iteration of the revision operator.

I plan to illustrate some of the above points as follows. First, I will briefly recall an overview of the
Revision eory of Truth. en, I will introduce the mathematical notion of generalized orbit and its
basic properties. Finally, we discuss how this laer concept can be successful in replacing the notion of
revision sequence as the fundamental notion for a theory of Truth.
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T     
    

Andrea Strollo
University of Helsinki

In the field of formal theories of truth a prominent place is occupied by the (broadly) Tarskian theory.
e theory is also called “there is a (full-not inductive) satisfaction class” or, shortly, PA(S)−. It con-
sists, apart from the axioms of the base theory PA, of the truth-compositional axioms (here I consider
arithmetical induction only):

1. ∀φ(Atomic(φ) → (Tr(φ) ↔ Tr∗(φ);

2. ∀φ(Tr(¬φ) ↔ ¬Tr(φ);

3. ∀φ∀ψ(Tr(φ ∧ ψ) ↔ Tr(φ) ∧ Tr(ψ));

4. ∀φ∀i(Tr(∀viφ) ↔ ∀tTr(φ(t/vi));5

e name PA(S)− should be explained, because it carries important information and leads to debatable
aspects.

When studying truth theories, it is oen said that a background theory of syntax is needed. Without it,
writing down axioms for a truth predicate and working out simple operations is impossible. We intend
to ascribe truth to so called “truth-bearers”; a theory of syntax is intended to give us basic information
about how these entities behave. One would expect a theory of syntax to consist of principles about
linguistic expressions, and this was exactly the case in the original work of Tarski. However, explicit
formal theories of syntax, in the style of concatenation theories i.e., are not much widespread among
truth-theorists.

e reason is that, aer Gödel, we know that a very good deal of syntax can be developed inside PA (as
in even weaker arithmetical theories). According to Gödelization, we can correlate natural numbers and
symbols of the language of PA. ere are many ways to think of this correspondence between strings
of symbols and numbers, but one oen adopted is the easiest one: strings of symbols are identified with
corresponding numbers.

Since PA is a very well known theory and we oen want to consider the effects of adding a theory of
truth to a theory of arithmetic like PA, it is clear that PA is the best candidate for a theory of syntax in
many cases. Indeed, we can add our theory of truth directly to PA, without describing an independent
theory of syntax. All of this sounds completely familiar and unproblematic, but it happens that a lot of
intricacies survive here.

5is way of writing is comfortable but incorrect. A lot of coding apparatus has been suppressed to achieve a
greater readability. To be rigorous we should write axiom 2, for example, like this: ∀x∀y(Sent(x) ∧ Sent(y) ∧
Neg(y, x) → (Tr(y) ↔ ¬Tr(x))). Here I shall persist with the most perspicuous presentation, but keep in
mind that this is the right form.
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Among the many syntactical properties that can be represented in PA, we can obviously define that
of being a sentence of the language of PA. For example there is a formula ’Sent(n)’ which is true of n if
and only if n is the code of a sentence of the language of PA. Until we consider the standard model N, as
it is natural doing, this works as expected. PA, however, also has non-standard models. In those non-
standard models, because of Overspill, the formula ’Sent(x)’ is going to be satisfied by non-standard
numbers too. Namely, if M |= PA is non-standard, we have that M |= Sent(b) for some b ∈ M ,
and b non-standard. e existence of non-standard numbers that, according to the model, code “sen-
tences”, drags us towards the realm of non-standard sentences. Very roughly, non-standard sentences
are sentences with a “non-standard structure”.6

Since every axiom of PA(S)− is subjected to a clause stating that the truth predicate applies to el-
ements satisfying the formula ’Sent(x)’, when we have a non-standard model, non-standard numbers
can well enter into the range of the truth predicate. Actually this is not only possible but mandatory.
In fact, PA(S)− proves ∀φ{Sent(φ) → [Tr(φ) ∨ ¬Tr(φ)]}, thus, for every φ such thatM |= Sent([φ])
either φ or ¬φ must be in the extension of “Tr”, even if φ is non-standard.

Now let S be this extension. Namely, given a modelM |= PA, S is the set of numbers satisfying the
axioms of PA(S)−,M,S |= PA(S)−. When a modelM has such a set S, we say that S is a satisfaction
class forM . is explains the name PA(S)−.

One of the most notable results about PA(S)− is the Lachlan’s theorem, according to which not every
model of PA has a satisfaction class. is result becomes even more surprising confronted with the fact
that PA(S)− is (proof theoretically) conservative over PA. us, that some models are excluded is not
due to new theorems in the language of PA.

Because of conservativity, one may well find — or, at least, I really found it so — the fact that in some
modelM we cannot have a suitable extension for the truth predicate to be a puzzling result. Actually, it
really seems that something, somewhere, is gone wrong. Ingenuously, it seems that a set S of sentences
satisfying the axioms of PA(S)− is always available, actually. Aren’t we entitled to do model theory in
every model of PA? Aer all, a set of sentences satisfying PA(S)− exists in everyM , as “M |=” proves.
But, according to Lachlan’s theorem, we cannot exploit this fact. What is crucial is the existence, in non-
standard models, of non-standard sentences, which make Lachlan’s proof work. e problem is not only
technical, it is a general philosophical one, since we do not recognize non-standard sentences as real
sentences and we shouldn’t be forced to apply our theory of truth to them, despite their mathematically
interesting nature.

e source of the phenomenon is not hard to identify. It lays in the fact that, when writing down the
Tarskian axioms for truth, we quantify in the object language, the language of PA, through the formula
’Sent(x)’. Doing so, anytime we have a non-standard model M of the base theory, we are forced to
consider non-standard elements satisfying it, obtaining non-standard sentences. is is symptomatic
of the fact that we developed our syntactic theory in the base theory. We have one single theory doing
two different jobs. On the one side we treat it as our base arithmetical theory, on the other side as
our syntactical theory. Having one single theory simplifies the issue, but forces the two functions to
overlap and intertwine. is gives unpleasant results: in one precise sense, the base language has no
non-standard sentences, and we would like to have a theory of syntax7 not forced to them only because
the base theory has non-standard models. In the present framework, instead, non-standard numbers

6For example, a sentence with a non-standard number of conjuncts
7Clearly, a theory of syntax may also have non standard models. e problem, though, is that here the models
of the base theory and those of the syntax theory are the same models, so that what happens at the level of
arithmetical objects, also happens at level of syntactical objects.
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automatically become non-standard sentences. If the base theory is about non-standard objects, we
must conclude that we have non-standard sentences in the object language.

Clearly, we are not forced to take seriously non-standard sentences when we specify the semantics
for the language of PA in general. Non-standard sentences are a side-effect of our formalization. eir
existence shows that such a formalizationmakes incomplete justice to ourmeta-mathematical reasoning
about the semantics of the language of PA.

e natural solution to avoid these kinds of side-effects is that of restoring the original Tarskian
aitude, namely distinguishing neatly the theory of syntax from the base theory. For sake of brevity,
here I give just a quick sketch to get a rough idea of how we can proceed. We start with a theory of
syntax S in the language LS .8 Since we want to devise syntax and semantics for a further language,
say LPA, we also need to be able to refer to the expressions of LPA, and the objects LPA is about. e
simplest way is then to adopt the language LS ∪ LPA. Some precaution should be certainly adopted
here, in order to take the intended domains apart. At this point we can add semantic axioms, namely
axioms for truth and denotation.9 Call the complex theory of truth (for LPA) we obtain “Σ”.

It can be proved that every model M of PA can be expanded to a model of Σ. e exact proof will
depend on the technical details, that, of course, must be spelled out; what is important, however, is the
simple idea of this proof. According to it, this time, we can restrict our aention to standard sentences:
we can interpret, by simple stipulation, the expressions of the object language in the standard part of
M . Disentangling the theory of syntax from the base theory, then, gives us what we wanted: we are not
forced to consider non-standard sentences in our truth theory, just because the base theory has non-
standard models. Being able to deal with standard sentences only allows us to circumvent Lachlan’s
theorem, since a set S, satisfying compositional axioms, is available in any model of PA; in particular,
it is a set of standard sentences, as expected.

e idea of a disentanglement of the theory of syntax from the base theory has been (re)proposed very
recently by Richard Heck, who argued from mere proof-theoretic considerations. Basically, he stressed
that, using a truth theory, we can, unpleasantly, prove consistency statements for PA already in weaker
fragments of PA.is can be done - cuing a very and interesting story short - only because we go freely
back and forth from syntax to numbers, inside the same theory. If we disentangle syntax, it becomes
clear that those consistency statements belong to the theory of syntax only, and the unfortunate results
are overcome.

Volker Halbach stressed that there is something puzzling in this approach as well. As a maer of
fact we know that the truth of consistency statements, formulated in a metalanguage, corresponds to
the truth of certain statements in the object language. is aspect is lost in Heck’s framework. If we
want to make justice to our meta-mathematical reasoning and formalize it adequately, then, a formal
reconstruction of Gödelization, and bridge laws connecting the two sides, must be added.

I see the simple model theoretic considerations above as a different way to arrive at the same aitude
of Heck and Halbach. In particular, I take these reflections as another good reason for disentangling
syntax and, at the same time, as a confirm of Halbach’s diagnosis: the identification between numbers
and expressions is certainly legitimate and mathematically highly useful, but it should handled with
extraordinary care.

8We may also keep using PA as our syntax theory, provided that we label and use it as a different theory from the
arithmetical base theory.

9e addition of separate axioms for denotation, or for sequences in case we have a satisfaction predicate, is a lile
tricky. Notice however, that no trick is needed until we do not disentangle the syntax from the base theory. In
particular, we have variables, which are syntactical objects, already identified with numbers, so a bridge theory
connecting the two domains is not needed.
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We focus on the co-inductive character of Yablo’s paradox, analyzing it by comparison in truth theories
and in ZFA. We show that the ω-inconsistency of truth theories is because, while they allow mixtures
of induction and co-induction, such mixtures are impossible in an ω-consistent ZFA.

I

Let us assume there exist infinitely many propositions ⟨S0, S1, S2, · · · ⟩ such that Sn insists that Si is
false for any i > n. en these propositions imply a contradiction. First let us assume S0 is false. en
there must be j > 0 such that Sj is true. is means that all Sj+1, Sj+2, Sj+3, · · · , Sk, · · · must be
false. However, if Sj+1 is false, then there exists k > j + 1 such that Sk is true, a contradiction. Next
assume S0 is true. en S1, S2, · · · are false, identical to the previous case. is is the well-known
Yablo’s paradox [Yab93].

ere has been previous discussion as to whether Yablo’s paradox is self-referential, but this paper
does not address that topic. Instead, we focus on how Yablo propositions are constructed. e answer to
whether Yablo’s paradox is self-referential seems to depend on how these propositions are constructed,
and the essence of their construction. A source of trouble is that only one method of constructing
⟨Sn : n ∈ ω⟩ is known, using diagonalization in a truth theory in classical logic [P97]. Such deficiency
of comparison examples could lead to a mistake that we regard properties that contingently hold in
the truth theory (and do not hold in other theories) as essential properties of Yablo’s paradox. For
example, consistent truth theories with sufficient expressive power to define Yablo propositions should
be ω-inconsistent [L01], but we do not know whether ω-inconsistency is essential in Yablo’s paradox.

Yablo propositions satisfy a characteristic property in that the intuitivemeaning ofSi is
∧

j>i ¬Tr(⌈Sj⌉)
(if the language has an infinite conjunction). erefore,

Si ≡ ¬Tr(⌈Si+1⌉) ∧ Si+2

¬Si ≡ Tr(⌈Si+1⌉) ∨ ¬Si+2.

ismeans each Si is constructed by directly using Si+1 and Si+2. However, to construct Si+2, we need
Si+3 andSi+4, etc. In thisway, there is an infinite regress; we need infinitelymany ⟨Si+1, Si+2, Si+3, · · · ⟩
to construct Si in the end. e characteristic points of this construction are that (1) we only directly use
finitely many already-constructed objects to construct a new object, and (2) we need infinitely many
steps to reach the initial construction case (meaning this is not inductive construction).

Such constructions are called co-inductive, and are widely used in computer science to represent
behaviors of non-terminate automatons [C93] because they allow construction of potentially infinite
objects in a finite way. Yablo’s paradox seems to be evidence that co-induction is naturally used in
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natural language. We focus on the co-inductive character of Yablo’s paradox, and analyze it by comparing
the paradox in truth theories to that in ZFA.

P  ZFA
One of the most famous ways to define a co-inductive language, a language with co-inductively defined
formulae, is to use ZFA [BE87] [BM96]. is is done by coding co-inductively defined propositions by
hypersets. As for Yablo’s paradox, Yablo suggested fixing ZFA as an analysis framework [Yab06], but
abandoned this approach without serious consideration. ZFA is an axiomatic set theory, ZF minus the
axiom of foundation plus the anti-foundation axiom (AFA), which allows definition of hypersets, which
need not be well founded in classical logic. Due to space limitations, we present the so-called flat system
lemma with only a brief review.

Definition 1. A flat system of equations ⟨X,A, e⟩ has the following characteristics:

• X ⊆ U (urelements, interpreted as variables),

• A is an arbitrary set, and

• e : X → P(X ∪A).

An example of a flat system is ⟨{a}, ∅, {⟨a, {a}⟩}⟩ for some urelement a; since e(a) = {a}, this
system represents an equation x = {x}, where x is a free variable.

eorem 3. AFA guarantees that any flat system of equations defines hypersets uniquely.

As a sort of co-inductive definition10, consider the flat system

⟨{an : n ∈ ω}, ∅, {⟨an, {an+1, an+2}⟩ : n ∈ ω}⟩,

which represents equations xn = {xn+1, xn+2} for any n (the construction is finite in any successor
step but we cannot achieve this in the initial case).

We fix ZFA as the framework of this paper because, thanks to [BE87], it is one of the most famous
truth theory frameworks that enables purely co-inductive construction of formulae11. e framework
of [BE87] seems to be overkill for semantic paradoxes. e liar proposition can be represented even
as arithmetic, but ZFA produces hypersets, as many as ordinal well-founded sets, to represent such
paradoxical propositions. e real value of this framework is that it allows many kinds of co-inductive
construction12.

10Actually ZFA is a set theory whose sets are constructed by co-induction in some transfinite induction step. e
universe of ZFA is constructed by V0 = ∅, Vα+1 = Vα

∪
P∗(Vα) and Vγ =

∪
δ<γ Vδ for any γ limit, where

P∗(A) = {x :∈ |TC(x) is bisimilar to R for some R ⊆ TC(A)2}[V04].
11Many theories allow co-inductive object definitions. For example, an intuitionistic theory has been extended to

allow such definitions (we do not have to worry about overly rich ontologies in such theories) [C93], and naive
set theories in non-classical logics have strong co-inductive characters [Yat12a]. However, ZFA is the most well
known among them.

12As Yablo pointed out in [Yab06], there is a counterintuitive problem that any propositions Si, Sj of Yablo’s
paradox are mutually identical. If we fix an Austinian-like approach, all propositions are pairwise distinct
(situations are taken into consideration). We omit the details here due to space limitations.
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C Y   

Let us introduce the construction of Russellian propositions orAustinian types13. Define their co-inductive
coding method by hypersets as follows:

Definition 2 (Russellian propositions or Austinian types). Formulae are coinductively coded in ZFA as
follows:

• ⌈A ∧B⌉ = {{c, ⌈A⌉}, {c, ⌈B⌉}} and ⌈∧i∈IAi⌉ = {{c, ⌈Ai⌉} : i ∈ I},

• ⌈A ∨B⌉ = {{d, ⌈A⌉}, {d, ⌈B⌉}} and ⌈∨i∈IAi⌉ = {{d, ⌈Ai⌉} : i ∈ I},

• ⌈¬A⌉ = {n, ⌈A⌉},

• ⌈Tr(A)⌉ = {t, ⌈A⌉}

for some fixed set c, d,n, t which are not equal to any natural numbers.

Note that this coding does not have an initial case, but is sufficient to code the liar propositions
or Yablo propositions. For example, the liar proposition λ is coded by a Russellian proposition ⌈λ⌉
satisfying x = {0, {∗, x}}.

Next let us define Yablo propositions14.

Definition 3 (Yablo propositions). Yablo (Russellian) propositions {Sn : n ∈ ω} are coded by the
following equation: let ⟨{xn, pn : n ∈ ω}, {c,n, t}, e⟩ be an infinite flat system such that, for any
n ∈ ω,

e(xn) = {pk : k > n}
e(pn) = {c, qn}
e(qn) = {n, rn}
e(rn) = {t, xk}

en S0, S1, · · · are solutions of x0, x1, · · · .

eorem 4. Yablo (Russellian) propositions ⟨Sn : n ∈ ω⟩ exists in ZFA15.

13Roughly speaking, an Austinian proposition is a pair of a situation and an Austinian type: different definitions
of situations give different definitions of propositions.

14We do not need the truth predicate to construct Yablo propositions in this framework. ⟨Yn : n ∈ ω⟩ are defined
by Y0, Y1, · · · are solutions of x0, x1, · · · and ¬Y0,¬Y1, · · · are solutions of y0, y1, · · · appearing in

e(pn) = {c, yn}
e(qn) = {c, xn}
e(xn) = {pk : k > n}
e(yn) = {qk : k > n}

e intuitive meaning of Yn is ∧n<i¬Yi, and this is equivalent to ¬Yi+1 ∧ Yi+2. Recall that the liar paradox
is not unique but an instance of a self-referential paradox; a Russell paradox is another. In this sense, Yablo’s
paradox is just an instance of a co-inductive paradox.

15Yablo’s paradox implies a contradiction when applying Russellian semantics. If we apply Austinian-like seman-
tics, all Yablo propositions are simply false (and thus do not imply a contradiction)
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e proof is a simple application of theorem 3. We note that, as we pointed out, Si = Sj holds for
any i, j since there is a bisimulation among all ∈-graphs ⟨Sn : n ∈ ω⟩ by this coding1617. However,
this is just a technical problem: just adding indexes makes them mutually different hypersets [Yat12b]
(but we omit the detail because they are essentially the same). We also note that any Sn forms an
infinite-branching tree of infinite height18.

A    :    ω

As discussed above, well-known consistent theories with sufficient expressive power, like Γ [Mc85] and
CTω [HH05], are ω-inconsistent. Yablo propositions ⟨S̄x : x ∈ ω⟩ are constructed by the fixed point
lemma in such theories as follows:

S̄x ≡ (∀z)[z > x→ ¬Sat(⌈Sx⌉, z)],

where Sat(⌈φ(x)⌉, z) ≡ Tr(⌈φ(z)⌉). Roughly speaking, the intuitive meaning of S̄x is

S̄x ≡ · · · ∧ ¬Sat(⌈S̄x⌉, x+ 2) ∧ ¬Sat(⌈S̄x⌉, x+ 1)︸ ︷︷ ︸
∞ many

e main difference between this construction and that of ZFA is whether the construction has an
initial case or not. In the ZFA case, the construction does not have an initial case. Truth theory con-
structions do have an initial case Sx, however, and any Sy is constructed from Sx as Sat(⌈Sx⌉, y) for
any y > x. anks to the truth predicate, the fixed point lemma enables an infinite operation over
formulae (Sx itself is a limit of infinite operation ∧y>x¬Sat(⌈Sx⌉, y)). e construction of Sx is not by
pure co-induction, but by a mixture of induction and co-induction, that is, a co-inductive construction
with the initial case.

is mixture plays a key role in the proof of ω-inconsistency in truth theories. For example, in Γ
[Mc85], ω-inconsistency is proved by the following formula γ:

γ ≡ ¬∀xTr(f(x, ⌈γ⌉))
f(n, ⌈φ⌉) = ⌈Tr(⌈· · ·Tr︸ ︷︷ ︸

n times

(⌈φ⌉) · · · )⌉

Roughly speaking, γ is defined by a mixture of induction and co-induction in the sense that the intuitive
meaning of γ is γ ≡ ¬Tr(⌈· · · (⌈Tr︸ ︷︷ ︸

∞ many

(⌈γ⌉)⌉) · · · )⌉).

16Let us consider the meaning of this. In the paradox, first we take S0 and assume it is true (or false). However,
even though we first assume Si is true (false), the behavior of the paradox, the derivation of the inconsistency,
is an identical form. If we formalize the paradox using game semantics, the player who gives a counterexample
has a very simple winning strategy regardless of the opponent’s choice, S0 or Si. In this sense, S0 and Si

are identical. Of course, the difference in the starting point can be distinguished if we consider the hidden
parameter, situations: we can distinguish S0 and Si in Austinian-like Semantics.

17Note that the mutual equality of Yablo propositions collapses Yablo’s paradox to a simple liar-like self-referential
paradox. Actually, since S0 = Si = S, the paradox, S0 → ¬Si ∧ Si and ¬S0 → Si ∧ ¬Si, are just equal to
S → ¬S and ¬S → S.

18Each tree Sn is self-similar, i.e., for any branch t of Sn, there is a sub-tree T ⊆ Sn|t such that there is an
isomorphism πj : T → Sj for some j > n. Actually, the tree and isomorphisms form a completely iterative
algebra [Mo08].
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Summing up, ZFA is proof-theoretically strong, so ZFA can distinguish the well-founded (WF) and
non-WF parts of the universe. e set of natural numbers ω, which is a member of the WF part, is
constructed by induction only, and co-inductive objects are in another partition, that is, the non-WF
part. erefore co-inductive construction does not give any effect to ω. In truth theories, the model
domain only consists of natural numbers, which are constructed inductively. Co-inductive construction,
which is possible by the fixed point lemma and the truth predicate, is not possible without induction,
and their mixture seems to involve the existence of non-standard natural numbers.
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Dallas Willard in the introduction to his translation of Edmund Husserl’s Philosophy of Arithmetic
writes: “ere are three main questions which Husserl addresses in his earliest writings:

1. What is number itsel?

2. In what kind of cognitive act is number itself actually present in our minds?

3. How do symbols and symbolic systems used in arithmetical thought enable us to represent, and
to arrive at knowledge of, number and number relations that are not “… intuitively given to our
minds …”.

ese questions are fundamental, but Husserl himself warns us: “e ‘philosophy of arithmetic’ … does
not claim to construct a thoroughgoing system of this boundary discipline, of equal importance to the
mathematician and to the philosopher. Rather, in a sequence of ‘psychological and logical investiga-
tions,’ it claims to prepare the scientific foundations for a future construction of that discipline. In the
present state of the science, nothing more than such a ‘preparation’ could be aempted. I would not
know how to indicate even one question of consequence where the response could sustain a merely
passable harmony among the investigators concerned.”

Frege was very critical of the book, and Husserl himself, preoccupied with more general tasks of phe-
nomenology, never returned to his early work. Nevertheless, Philosophy of Arithmetic is an important
contribution, and it has been recently made more accessible by Stefania Cantrone’s analysis in Logic
and Philosophy of Mathematics in the Early Husserl, Springer, Synthese Library, 345, 2010.

As an introduction to the discussion, I will present excerpts from Philosophy of Arithmetic and other
texts.
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