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Preliminaries

All languages will be recursive extensions of
the language of arithmetic:

LA = { +, ·, 0, 1, < } .
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Preliminaries

All languages will be recursive extensions of
the language of arithmetic:

LA = { +, ·, 0, 1, < } .

All models will be models of PA∗, i.e., PA
together with induction axioms for the full
language.
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Recursive saturation...
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Recursive saturation...

A type p(x, a) over a model M is a set of
formulas with parameter a ∈ M , such that
there is an elementary extension N of M and
element n ∈ N satisfying N ² p(n, a).
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Recursive saturation...

A type p(x, a) over a model M is a set of
formulas with parameter a ∈ M , such that
there is an elementary extension N of M and
element n ∈ N satisfying N ² p(n, a).

M is recursively saturated if all recursive
types over M are realized.
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Recursive saturation...

A type p(x, a) over a model M is a set of
formulas with parameter a ∈ M , such that
there is an elementary extension N of M and
element n ∈ N satisfying N ² p(n, a).

M is recursively saturated if all recursive
types over M are realized.

Any model M has an elementary extension of
the same cardinality which is recursively
saturated.
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...continued

SSy(M) ⊆ P(ω) is the standard system of M ,
i.e., the collection of standard parts of
parameter definable sets; i.e., the collection
of all sets of the form { n ∈ ω | M ² ϕ(n, a) },
where a ∈ M .

For any M , all recursive sets are in SSy(M).

If M is recursively saturated then any type
p(x, a) ∈ SSy(M) over M is realized in M .
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...continued

SSy(M) ⊆ P(ω) is the standard system of M ,
i.e., the collection of standard parts of
parameter definable sets; i.e., the collection
of all sets of the form { n ∈ ω | M ² ϕ(n, a) },
where a ∈ M .

For any M , all recursive sets are in SSy(M).
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A digression
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Stronger versions of saturation
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Stronger versions of saturation

There are stronger variants of recursive
saturation:
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Stronger versions of saturation

There are stronger variants of recursive
saturation:

Arithmetic saturation: rec sat plus SSy(M)
closed under the jump operator.
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Stronger versions of saturation

There are stronger variants of recursive
saturation:

Arithmetic saturation: rec sat plus SSy(M)
closed under the jump operator.

β-saturation: rec sat plus SSy(M) is a
β-model, i.e., for every Σ1

1-formula Θ(X) and
A ∈ SSy(M); if N2 ² Θ(A) then
SSy(M) ² Θ(A).

N2 is the standard model of second-order
arithmetic.
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Arithmetic saturation
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Arithmetic saturation

First introduced by Kaye, Kossak and Kotlarski
when they proved that a countable recursively
saturated model of arithmetic has a maximal
automorphism iff the model is arithmetically
saturated.
A maximal automorphism is an automorphism
moving all non-definable points.
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β-saturation...
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β-saturation...

Jonathan Stavi, in the -80, (almost) proved
that a short cofinally expandable model is
β-saturated.
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β-saturation...

Jonathan Stavi, in the -80, (almost) proved
that a short cofinally expandable model is
β-saturated.

However; Solovay later proved that no short
cofinally expandable models exist.
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...continued

There is a variant of resplendency (an
expandability property) which is equivalent to
β-saturation:
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...continued

There is a variant of resplendency (an
expandability property) which is equivalent to
β-saturation:

For every T, p(x, a) ∈ SSy(M), where T is
a theory and p(x) is a type, both in a
recursive extension of the language of
(M, a), a ∈ M :
If Th(M, a) + T + p↑ has a model then
there is an elementary submodel a ∈ L of
M with an expansion satisfying T + p↑.

p↑ means that p(x, a) is omitted.
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Back from the digression
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The standard predicate
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The standard predicate

The standard predicate, st, is the predicate of
standard numbers.
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The standard predicate

The standard predicate, st, is the predicate of
standard numbers.

No model (M, st) is recursively saturated
since the type

{ x > n ∧ st(x) | n ∈ ω }

is omitted.
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Standard recursive saturation

Variations on resplendency and recursive saturation – p. 12



Standard recursive saturation

A standard type over M is a type over (M, st)
such that there is an ω-saturated elementary
extension of M realizing the type.
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Standard recursive saturation

A standard type over M is a type over (M, st)
such that there is an ω-saturated elementary
extension of M realizing the type.

A model is standard recursively saturated
(std rec sat) if all recursive standard types are
realized.

Variations on resplendency and recursive saturation – p. 12



Standard recursive saturation

A standard type over M is a type over (M, st)
such that there is an ω-saturated elementary
extension of M realizing the type.

A model is standard recursively saturated
(std rec sat) if all recursive standard types are
realized.

Any type over M (in which st does not occur)
is a standard type.
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An equivalence
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An equivalence

A countable recursively saturated model is std
rec sat iff
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An equivalence

A countable recursively saturated model is std
rec sat iff

for all standard types p(x, a) ∈ SSy(M)
over (M, st) there is a complete standard
type q(x, a) ∈ SSy(M) extending p(x, a).
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The proof of the equivalence
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The proof of the equivalence

Lemma: If M is countable and std rec sat,
and M ≺ N is ω-saturated then
(M, st) ≺ (N, st).
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The proof of the equivalence

Lemma: If M is countable and std rec sat,
and M ≺ N is ω-saturated then
(M, st) ≺ (N, st).

Thus, any type tp(M,st)(m/a), where M is std
rec sat, is a standard type.
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The proof of the equivalence

Lemma: If M is countable and std rec sat,
and M ≺ N is ω-saturated then
(M, st) ≺ (N, st).

Thus, any type tp(M,st)(m/a), where M is std
rec sat, is a standard type.

⇒ Let M be std rec sat, and p(x, a) ∈ SSy(M) a
std type. Let m ∈ M realize p(x, a). Then,
p(x, a) ⊆ tp(M,st)(m/a) ∈ SSy(M).
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The proof of the equivalence

Lemma: If M is countable and std rec sat,
and M ≺ N is ω-saturated then
(M, st) ≺ (N, st).

Thus, any type tp(M,st)(m/a), where M is std
rec sat, is a standard type.

⇒ Let M be std rec sat, and p(x, a) ∈ SSy(M) a
std type. Let m ∈ M realize p(x, a). Then,
p(x, a) ⊆ tp(M,st)(m/a) ∈ SSy(M).

⇐ By a Henkin type construction.
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The standard system...
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The standard system...

Let M be a std rec sat model.
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The standard system...

Let M be a std rec sat model. Then

(1) SSy(M) is a βω-model of second-order
arithmetic, i.e., as second order models
SSy(M) ≺ N2, where N2 is the standard
second-order model of arithmetic.
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The standard system...

Let M be a std rec sat model. Then

(1) SSy(M) is a βω-model of second-order
arithmetic, i.e., as second order models
SSy(M) ≺ N2, where N2 is the standard
second-order model of arithmetic.

(2) SSy(M) is closed under the following
operation:

A ⊆ ω 7→ Th(N2, A).
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...continued

Under certain set-theoretic assumptions
(V = L or projective determinacy) we have
(2) ⇒ (1).

Question: Are conditions (1) and (2) also
sufficient, i.e., is any countable recursively
saturated model satisfying condition (1) and
(2) std rec sat?
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Question: Are conditions (1) and (2) also
sufficient, i.e., is any countable recursively
saturated model satisfying condition (1) and
(2) std rec sat?
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The end

That’s all folks!
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