Generalized quantifiers in dependence logic

Fredrik Engström

2011-02-04

Fredrik Engström

2 Logics with dependence

3 Generalized quantifiers in dependence friendly settings

Dependencies

Fredrik Engström

Functional dependence

Dependencies

Course	Book	Lecturer
LC1510	Mendelson	Engström
LC1510	Mendelson	Kaså
LC1520	Halmos	Engström

 $X \vDash [Course \rightarrow Book]$ $X \nvDash [Course \rightarrow Lecturer]$

Closed downwards: If $X \subseteq Y$ and $Y \models [\bar{x} \rightarrow \bar{y}]$ then $X \models [\bar{x} \rightarrow \bar{y}]$. **Closed under projections:** If Y is X with one column/variable/attribute z deleted, $Y \models [\bar{x} \rightarrow \bar{y}]$ and $z \notin \bar{x} \cup \bar{y}$ then $Y \models [\bar{x} \rightarrow \bar{y}]$.

Multivalued dependence

Course	Book	Lecturer
LC1510	Mendelson	Engström
LC1510	Mendelson	Kaså
LC1520	Halmos	Engström
LC1520	Mendelson	Engström
LC1520	Halmos	Kaså
LC1520	Mendelson	Kaså

 $F^{\text{Book}}(\text{LC1510}, \text{Engström}) = \{ \text{Mendelson} \}$ $F^{\text{Book}}(\text{LC1510}, \text{Kaså}) = \{ \text{Mendelson} \}$ $F^{\text{Book}}(\text{LC1520}, \text{Engström}) = \{ \text{Mendelson}, \text{Halmos} \}$ $F^{\text{Book}}(\text{LC1520}, \text{Kaså}) = \{ \text{Mendelson}, \text{Halmos} \}$

Multivalued dependence

Course	Book	Lecturer
LC1510	Mendelson	Engström
LC1510	Mendelson	Kaså
LC1520	Halmos	Engström
LC1520	Mendelson	Engström
LC1520	Halmos	Kaså
LC1520	Mendelson	Kaså

 F^{Book} only depends on the value of Course. Therefore,

 $X \vDash [Course \rightarrow Book].$

 $X \vDash [\bar{x} \twoheadrightarrow y]$ iff F_X^y only depends on the values of \bar{x} . $X \vDash [\bar{x} \twoheadrightarrow \bar{y}]$ is **not** closed downwards or under projections. Teams and dependencies

- Fix a domain M and a set of variables U.
- A team X is a set of assignments of elements of M to U, i.e., $X \subseteq M^U$.
- $X \vDash [\bar{x} \rightarrow \bar{y}]$ if for all $s, s' \in X$ if $s(\bar{x}) = s'(\bar{x})$ then $s(\bar{y}) = s'(\bar{y})$.
- $X \vDash [\bar{x} \twoheadrightarrow \bar{y}]$ if for all $y \in \bar{y} \ F_X^y$ depends only on the values of \bar{x} .

Proposition

 $X \vDash [\bar{x} \rightarrow \bar{y}]$ iff for all $s, s' \in X$ such that $s(\bar{x}) = s'(\bar{x})$ there exists $s_0 \in X$ such that $s_0(\bar{x}) = s(\bar{x})$, $s_0(\bar{y}) = s(\bar{y})$, and $s_0(\bar{z}) = s'(\bar{z})$, where \bar{z} is $U \setminus (\bar{x} \cup \bar{y})$.

Axiomatization of functional dependence

 $D \cup \{\varphi\}$ is a (finite) set of functional dependence atoms.

$$D\vDash \varphi \text{ if } \forall X(X\vDash D \Rightarrow X\vDash \varphi).$$

Proposition (Armstrong 1974)

 $D \vDash \varphi$ iff φ is derivable from D with the rules:

- **Reflexivity:** If $\bar{y} \subseteq \bar{x}$ then $[\bar{x} \rightarrow \bar{y}]$.
- Augmentation: If $[\bar{x} \rightarrow \bar{y}]$ then $[\bar{x}, \bar{z} \rightarrow \bar{y}, \bar{z}]$.
- **Transitivity:** If $[\bar{x} \rightarrow \bar{y}]$ and $[\bar{y} \rightarrow \bar{z}]$ then $[\bar{x} \rightarrow \bar{z}]$.

Axiomatization of multivalued dependence

Fix a set U of variables.

Dependencies

Proposition (Beeri, Fagin, Howard, 1977)

Then $D \vDash \varphi$ iff φ is derivable from D with the following inference rules:

- Complementation: If x̄ ∪ ȳ ∪ z̄ = U, ȳ ∩ z̄ ⊆ x̄, and [x̄→ȳ] then [x̄→z̄]
- **Reflexivity:** If $\bar{y} \subseteq \bar{x}$ then $[\bar{x} \rightarrow \bar{y}]$.
- Augmentation: If $\bar{z} \subseteq \bar{w}$ and $[\bar{x} \rightarrow \bar{y}]$ then $[\bar{x}, \bar{w} \rightarrow \bar{y}, \bar{z}]$.
- Transitivity: If $[\bar{x} \rightarrow \bar{y}]$ and $[\bar{y} \rightarrow \bar{z}]$ then $[\bar{x} \rightarrow \bar{z} \setminus \bar{y}]$.

Logics with dependence

Motivation

Some relative of each villager and some relative of each townsmen hate each other. (Hintikka 1974)

$$\frac{\forall x \exists y}{\forall z \exists w} R(x, y, z, w)$$

$$\exists f,g \forall x,z \ R(x,f(x),z,g(z)).$$

Most of the dots and most of the stars are all connected by lines. (Barwise 1979)

Branching

For monotone quantifiers the branching of Q_1 and Q_2

$$\frac{Q_1x}{Q_2y}R(x,y)$$

should be interpreted as

 $Br(Q_1, Q_2) xy R(x, y),$

where $Br(Q_1, Q_2)$ is the quantifier

 $\{R \mid \exists A \in Q_1, B \in Q_2, A \times B \subseteq R\}.$

Dependence logic

- Syntax of dependence logic: FOL + $[t_1, ..., t_{k-1} \rightarrow t_k]$.
- Assume all formulas in negation normal form.
- Let X ⊆ M^{x}. We write M ⊨_X φ where the free variables of φ are among x̄.
- Each $s \in X$ is an assignment of values to the variables in \bar{x} .
- For FOL-formulas φ we have M ⊨_X φ iff M ⊨ φ[s] for every s∈X.

Semantics

- $M \vDash_X [\bar{x} \rightarrow \bar{y}]$ if $X \vDash [\bar{x} \rightarrow \bar{y}]$
- M⊨_X φ ∨ ψ if there are Y and Z such that X = Y∪Z and M⊨_Y φ and M⊨_Z ψ.
- M ⊨_X ∃xφ if there is a function f : X → M such that M ⊨_{X[f/x]} φ, where X[f/x] = {s[f(s)/x] | s ∈ X}.
- $M \vDash_X \forall x \varphi$ if $M \vDash_{X[M/x]} \varphi$, where $X[M/x] = \{ s[a/x] \mid a \in M, s \in X \}.$

Some facts of DL

- **Empty team:** $M \vDash_{\emptyset} \varphi$ for any φ .
- LEM: There are sentences σ such that $M \not\models \sigma \lor \neg \sigma$.
- Monotonicity: If $M \vDash_X \varphi$ and $Y \subseteq X$ then $M \vDash_Y \varphi$.
- Weakness: For sentences σ there is translation $\hat{\sigma}$ to Σ_1^1 such that $\sigma \equiv \hat{\sigma}$.
- Strength: For Σ₁¹ sentences Φ there is a translation Φ̂ to DL such that Φ≡Φ̂.

Generalized quantifiers in dependence friendly settings

Lifting

$$\mathcal{H}(M^n) = \mathcal{L}(\mathcal{P}(M^n))$$

Given $h: \mathscr{P}(A) \to \mathscr{P}(B)$ we define the Hodges-lift of that function as:

$$\mathcal{L}(h): \mathcal{H}(A) \to \mathcal{H}(B), \mathcal{X} \mapsto \downarrow \{h(X) \mid X \in \mathcal{X}\},\$$

where ${\downarrow}\mathscr{X}$ is the downward closure of \mathscr{X} , i.e.,

$$\downarrow \mathscr{X} = \{ X \mid \exists Y \in \mathscr{X}, X \subseteq Y \}.$$

Lifting quantifers

Q a monotone type $\langle 1 \rangle$ quantifier. $Q: \mathscr{P}(M^{n+1}) \rightarrow \mathscr{P}(M^n)$ $\mathscr{H}(Q)$ gives us truth condition for Q in Hodges semantics:

 $M \vDash_X Q_X \varphi$ iff there is $F : X \to Q$ such that $M \vDash_{X[F/x]} \varphi$.

where $X[F/x] = \{ s[a/x] | a \in F(s) \}.$

 $\mathscr{H}(\exists)$ and $\mathscr{H}(\forall)$ give us the same truth condition for \exists and \forall as before.

Proposition

For L(Q)-formulas φ and teams X we have $M \vDash_X \varphi$ iff for all $s \in X$, $M \vDash_s \varphi$.

Quantifiers and dependence If Q contains no singletons then

 $M \not\models_X Qx([\rightarrow x] \land \varphi)$

Assume that D(x, y) is an atom closed under subteams satisfying:

 $\forall x Q y (D(x,y) \land R(x,y)) \longleftrightarrow Br(\forall, Q) x y R(x,y).$

Fix $M = \{0, 1, 2\}$, then $(M, M^2) \models Br(\forall, \exists^{\geq 3})xy \ R(x, y)$, thus: $M \models_{[M^2/x, y]} D(x, y)$. By the closureness of D:

 $X = (\{0,1\} \times \{0,1\}) \cup (\{2\} \times \{1,2\})$

satisfies the atom D and thus $(M, X) \vDash \forall x \exists^{\geq 2} y (D(x, y) \land R(x, y))$. However $(M, X) \nvDash Br(\forall, \exists^{\geq 3}) xy R(x, y)$. Thus no atom D(x, y) closed under taking subteams works as intended on both the guantifiers $\exists^{\geq 2}$ and $\exists^{\geq 3}$.

Fredrik Engström

Quantifiers and multivalued dependence

Proposition

If Q is monotone then $M \models Br(Q, Q)xy R(x, y)$ iff $M \models QxQy([\rightarrow y] \land R(x, y)).$

 $\models \forall x [\rightarrow x], \text{ but } M \not\models \forall x [\rightarrow x] \text{ for } |M| \ge 2.$ Thus $M \not\models \forall x \forall y ([\rightarrow y] \land R(x, y)).$ Br $(\forall, \forall) xyR(x, y)$ is equivalent to $\forall x \forall yR(x, y)$ and can thus be true.

 $FOL+[\rightarrow m] = MVDL.$

Proposition

MVDL has the same strength (on the level of sentences) as ESO.

Open Qs

What is the strength of FOL+[\rightarrow] on formula level? Solved by V+K for DL. MVDL+Q, where Q is ESO-definable is of the same strength as ESO. However, is there a way of uniformly define Q in MVDL?What about $Q = Q_0$?

Lunch

Fredrik Engström