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Arithmetic

Arithmetic is the part of mathematics considering
natural numbers (0,1,2,3,. . . ) and the two operations
addition ( �) and multiplication ( �).

For example, given a natural number �, finding
natural numbers

��
�

� � � such that

� 	 � � �

is a problem in arithmetic.
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First-order

A property is ‘first-order’ if it can be expressed by only
quantifying over individuals and not sets.

The statement
‘for all � � � there are natural numbers �

and � such that � is prime and � 	 � � �’
is a first-order statement.
The statement

‘in any set of natural numbers there is a
least member’

is not a first-order statement.
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First-order arithmetic

First-order arithmetic (also known as Peano Arithmetic,
or

� �

) is a first-order axiomatisation of arithmetic.

� Non-logical language

��� � �

, �, � ,
�

.

� Axioms:

� Defining axioms for

�

, �, � and

�

,

� Induction axioms saying that every definable set
of natural numbers has a least member (infinitely
many).

By the Gödel-Rosser incompleteness theorem there is
no axiomatisation of true first-order arithmetic, but

� �

captures most of true first-order arithmetic.
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Model

A model is a set together with some extra structure in
the form of constants, functions and predicates.

A theory is a set of first-order sentences (statements).

A model is a model of a theory if all statements in the
theory is true about the model.

A model of first-order arithmetic is therefore a set
with one constant

� �

and three functions

� �

, � �

and

�

�

where the axioms of
� �

are true.

If � is true about (in) we write

� �.
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Nonstandard

The set of natural numbers

�

together with the ‘real’
successor, the ‘real’ addition, and the ‘real’
multiplication functions is a model of

� �

. It is called the
standard model of

� �

.

True arithmetic is the theory of all sentences true in the
standard model of

� �

.

Any other model of

� �

is called ‘nonstandard.’

Satisfaction classes in nonstandard models of first-order arithmetic – p.6/17



Truth inside the model

If is a model of

� �

, we know, by Tarski’s undefinability
of truth, that there is no formula

��� ��� �

in

� � such that

� ��� � � � � �
for all

�� -sentences �. Here � is a (recursive) map
from the formulas in

�� into the natural numbers.

What we can (clearly) do is to add an extra predicate to
the language,

�

, such that
� � � � � � �

for all

�� -sentences �.
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Nonstandard sentences

In a nonstandard model of

� �

there are nonstandard
elements � � �

.

In any such model there exists nonstandard elements
which the model “thinks” are formulas.

The formula

� �
	 � � � � �
	 � � � � �
	 � ��
� � �

� � �
	 � � �

is a nonstandard formula if the dots represent a
nonstandard number of repetition.

When is such a formula true?
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Satisfaction classes

What do we want

�

to say about nonstandard
sentences � � � �

?

We want, at least, the following to be true for all
standard and nonstandard sentences �:

� � � � � �� � � � � �

� � � � � � �� � � � � � � � � � � �

� �� � � ��� � � �� � � � � � ��� � �
�

Such a

�

is called a satisfaction class.
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Recursive saturation

In fact, not all models of

� �

have satisfaction classes. It
turns out that for the countable models it is exactly the
recursively saturated models which do admit
satisfaction classes.

A model is recursively saturated if it is ‘big’ and
‘homogeneous’ (in some technical sense 	 all recursive
types are realized)

Every countable recursively saturated model of

� �

has

� ���

different satisfaction classes.
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Consistency

Define

�
� � for a nonstandard (or standard) sentence �

to mean that every satisfaction class includes �.

For standard sentences � we have

� � iff
�

� �
�

It turns out that

�
� � iff for some finite approximation

�

of �,

� �

.

A finite approximation of � is a standard formula which
you get by replacing some subformulas of � by
predicate symbols.

Satisfaction classes in nonstandard models of first-order arithmetic – p.11/17



Example

Let ��� be the formula

� �
	 � � � � �
	 � � � � �
	 � ��
� � �

� � �
	 � � �

with � subformulas

� �
	 �

.

The finite approximations of this formula are (more or
less):

��
���

� �
	 � � ��
��� � 	

� �
	 � � � � �
	 � � ��
�� � 


�

...
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Example (cont)

Since we can interpret the predicate symbols
�
�� � �

either as ‘true’ or ‘false’ we can make all these finite
approximations true or all of them true.
Therefore

�
� ��� and

�
� � ��

for any nonstandard � � .
Also

�
�

� � � �
� � �

� � � �
� � �

� �
	 � and

�
�

� � � �
� � �

� � � �
� � �

� � �
	 �

for any nonstandard � � and any nonstandard
number of function symbols

�

.
These sentences, which we can intuitively decide, but
which are not decided by

�
� are called ‘pathologies.’
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Removal of pathologies

Pathology Solution Con

� �
� � �

� � � �
� � �

�
	 � Axioms:

���

At Yes

� �
	 � ��
� � �

� � �
	 �

Axioms:
��� �
� Yes

� � � � � � ��
� � �

� � � � � � �

Rule: Prop ?� ��� ��� � � � �� � �
	 �

Axioms:

��� � 	 Yes
Rules:

� �	� , � -rule ?�� �
� �
� � � � �� �
� � � �

Rule: Pred ?

�

Rule: Skolem ?�� �
� � � � � � � � �
 � �
� � � �

Rule: Pred ?

�

�

It is known that if we also include all nonstandard
instances of axioms of

� �

then the consistency of Pred
depends on the theory of .
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Resplendency

We know that the consistency of any of these logics can
only depend on the first-order theory of , i.e., given a
completion

�

of

� �

, either the logic is consistent in all
countable recursively saturated models or in none.

This is due to the resplendency of all countable
recursively saturated models.
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Atomics

Given a satisfaction class

�

we can define the valuation

� � � � to be a map from the nonstandard closed terms
into by saying � � � � ��� �

	 � iff

� � � 	 �
�

.

Why do these valuations take values in ?

One answer: A rather “ugly looking” axiom in the proof
theory of satisfaction classes.
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Free satisfaction classes

A free satisfaction class

�

is one where this axiom is
removed and therefore � � � � can take values in some��

.

Given a free satisfaction class we can define the model� � which is the model of values of all closed, standard
and nonstandard, terms. We know that

� � � .

Natural question: Which models do arise in this way?

A free satisfaction class is free of existential
assumptions for nonstandard terms, since we could
have �� � � � 	 � �

for some nonstandard term

�

.
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