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m " — Arecursive extension of .Z(a).
m T — A first-order theory in the language 2.
mp(x) aset of £ formulas.

= We write p1 for the .Z -sentence
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saying that p(z) is omitted (and p| for
dz A\ p(x) saying that p(z) is realized).
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= We write p1 for the £ -sentence

Va— /\p(x)

saying that p(x) is omitted (and p| for
dz A\ p(x) saying that p(z) is realized).

= We look at properties of the kind:

If “Theory of 9" + T+ pT Is somehow
“consistent” then it is satisfied in some
expansion of 9]t (or in an expansion of
an elementary submodel of 91).
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Setup

m The consistency notions we will look at are

= Ordinary consistency, I.e., “there exists a
model of ...” (Con(...)), and

= w-Ssaturation consistency; “there exists a
model of ... whose .Z reduct is
w-saturated”. (w—SatCon g(...))

m For first-order theories these are the same,
but not for infinitary logics.
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Recursive saturation

m 9)1 Is recursively saturated if every recursive
type in Mt is realized.
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has an infinite path).
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Recursive saturation

m A Scott set is a subset of P(N) closed under
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and Konig’s lemma (every infinite binary tree
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Recursive saturation

m Given a Scott set X, 9t i1s X-saturated if
MEp(z,a)l iff p(@,7g)eX

for every complete type p(z,a) in 1.

m Every recursively saturated model 9t Is
X-saturated for some Scott set X.

m Every X-saturated model is recursively
saturated.

Omitting types in expansions and related strong saturation

properties — p.3/10



Resplendency

m A model 9 is resplendent if for every a € 9N,
every recursive extension " of £ (a) and
every recursive T in .Z* such that
Th(9, a) + T is consistent there is an
expansion 2" of Mt satisfying 7.
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Resplendency

m A model 9 is resplendent if for every a € 9N,
every recursive extension " of £ (a) and
every recursive T in .Z* such that
Th(9, a) + T is consistent there is an
expansion 2" of Mt satisfying 7.

m Every countable recursively saturated model
IS resplendent, and every resplendent model
IS recursively saturated.
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Subresplendency

= A model 91 is subresplendent if for every
a € 91, every recursive extension .Z* of Z(a)
and every recursive T in £+ such that
Th(9, a) + T is consistent there is an
elementary submodel a € 91 < M and an
expansion 91+ of 91 satisfying 7.
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Subresplendency

= A model 91 is subresplendent if for every
a € 91, every recursive extension .Z* of Z(a)
and every recursive T in £+ such that
Th(9, a) + T is consistent there is an
elementary submodel a € 91 < M and an
expansion 91+ of 91 satisfying 7.

= A model is subresplendent iff it is recursively
saturated.
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A strong saturation property

= A model which is X-saturated for a Scott set
X suchthatifa e 9, T,p € X and
w—SatCong(Th(M, a) + T+ pT) then there
exists a completion 7° € X of T' such that
w—SatCon g (Th(IM,a) + T° + pT) is called
p-Saturated.
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A strong saturation property

m Every model has a p-saturated elementary
extension of the same cardinality.

m Every p-saturated countable model 971 is
p-resplendent:
For all @ € 9t and all recursive T, p If
w—SatCong(Th(9M,a) + T + pT) then
there exists an expansion 9" of 9t such

that M E T + p].



Analytic saturation

= A model is analytically saturated if it is
X-saturated for a Scott set X which satisfies
all true second-order arithmetic sentences
with parameters from X.
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= A model is analytically saturated if it is
X-saturated for a Scott set X which satisfies
all true second-order arithmetic sentences
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m |f 90T E PA Is p-resplendent then it is
analytically saturated.
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Analytic saturation

= A model is analytically saturated if it is
X-saturated for a Scott set X which satisfies
all true second-order arithmetic sentences
with parameters from X.

m |f 90T E PA Is p-resplendent then it is
analytically saturated.

m Are analytic saturation and p-saturation
equivalent for models of PA?
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p-saturation

m A model is g-saturated If it is X-saturated for a
Scott set X which satisfies all true X1
arithemtic sentences with parameters from X
(l.e., X IS a -model).
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m A model is g-saturated If it is X-saturated for a
Scott set X which satisfies all true X1
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(l.e., X IS a -model).
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p-saturation

m Every g-saturated model 971 is
p-subresplendent:
For all @ € 9t and all recursive T, p If
Con(Th(9M,a) + T + pT) then there
exists an elementary submodel
a € N < N and an expansion N+ of N
such that )" E T + pT.

m |f 97T E PA Is p-subresplendent then it is
p-saturated.
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To come

m A theory T (in an infinitary logic) is called
pervasive over Mt If for any O > I there Is an
R = 91 and an expansion & of £ such that
RTET.
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To come

m A theory T (in an infinitary logic) is called
pervasive over Mt If for any O > I there Is an
R = 91 and an expansion & of £ such that
RTET.

= Replace w—SatCon ¢ (Th(9M,a) + T + pT) with
T + p1 IS pervasive over .
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