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ā ∈ M — A finite set of parameters from M.

Omitting types in expansions and related strong saturation properties – p.2/10



Setup

L — A recursive language.

M — An L -structure.
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L — A recursive language.

M — An L -structure.

ā ∈ M — A finite set of parameters from M.

L + — A recursive extension of L (ā).

T — A first-order theory in the language L +.
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L + — A recursive extension of L (ā).

T — A first-order theory in the language L +.

p(x) a set of L + formulas.

We write p↑ for the L +
ω1ω

-sentence

∀x¬
∧

p(x)

saying that p(x) is omitted (and p↓ for
∃x

∧
p(x) saying that p(x) is realized).
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Setup

The consistency notions we will look at are
Ordinary consistency, i.e., “there exists a
model of . . . ” (Con(. . .)), and
ω-saturation consistency; “there exists a
model of . . . whose L reduct is
ω-saturated”. (ω−SatConL (. . .))

For first-order theories these are the same,
but not for infinitary logics.
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Recursive saturation

M is recursively saturated if every recursive
type in M is realized.

Every X-saturated model is recursively
saturated.
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Resplendency

A model M is resplendent if for every ā ∈ M,
every recursive extension L + of L (ā) and
every recursive T in L + such that
Th(M, ā) + T is consistent there is an
expansion M

+ of M satisfying T .

Every countable recursively saturated model
is resplendent, and every resplendent model
is recursively saturated.
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Subresplendency

A model M is subresplendent if for every
ā ∈ M, every recursive extension L + of L (ā)
and every recursive T in L + such that
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expansion N
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A strong saturation property

A model which is X-saturated for a Scott set
X such that if ā ∈ M, T, p ∈ X and
ω−SatConL (Th(M, ā) + T + p↑) then there
exists a completion T c ∈ X of T such that
ω−SatConL (Th(M, ā) + T c + p↑) is called
p-saturated.
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A strong saturation property

Every model has a p-saturated elementary
extension of the same cardinality.

Every p-saturated countable model M is
p-resplendent:

For all ā ∈ M and all recursive T, p if
ω−SatConL (Th(M, ā) + T + p↑) then
there exists an expansion M

+ of M such
that M

+
² T + p↑.
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Analytic saturation

A model is analytically saturated if it is
X-saturated for a Scott set X which satisfies
all true second-order arithmetic sentences
with parameters from X.

If M ² PA is p-resplendent then it is
analytically saturated.

Are analytic saturation and p-saturation
equivalent for models of PA?

Omitting types in expansions and related strong saturation properties – p.7/10



Analytic saturation

A model is analytically saturated if it is
X-saturated for a Scott set X which satisfies
all true second-order arithmetic sentences
with parameters from X.

If M ² PA is p-resplendent then it is
analytically saturated.

Are analytic saturation and p-saturation
equivalent for models of PA?

Omitting types in expansions and related strong saturation properties – p.7/10



Analytic saturation

A model is analytically saturated if it is
X-saturated for a Scott set X which satisfies
all true second-order arithmetic sentences
with parameters from X.

If M ² PA is p-resplendent then it is
analytically saturated.

Are analytic saturation and p-saturation
equivalent for models of PA?

Omitting types in expansions and related strong saturation properties – p.7/10



β-saturation

A model is β-saturated if it is X-saturated for a
Scott set X which satisfies all true Σ1

1

arithemtic sentences with parameters from X

(i.e., X is a β-model).
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Summary

p-sat •
countable

• p-resp
PA

analytic sat •

β-sat • • p-subresp
PA
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To come

A theory T (in an infinitary logic) is called
pervasive over M if for any N Â M there is an
K Â N and an expansion K

+ of K such that
K

+
² T .

Replace ω−SatConL (Th(M, ā) + T + p↑) with
T + p↑ is pervasive over M.
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