Omitting types in expansions and related strong saturation properties *Work in progress*

Fredrik S. G. Engström

RICHARD W. KAYE

These slides are available at:

http://www.math.chalmers.se/~engstrom.

• \mathscr{L} — A recursive language.

- \mathscr{L} A recursive language.
- $\blacksquare \mathfrak{M} \mathsf{An} \, \mathscr{L}\text{-structure.}$

- \mathscr{L} A recursive language.
- \mathfrak{M} An \mathscr{L} -structure.
- $\mathbf{a} \in \mathfrak{M} \mathbf{A}$ finite set of parameters from \mathfrak{M} .

- \mathscr{L} A recursive language.
- \mathfrak{M} An \mathscr{L} -structure.
- $\mathbf{a} \in \mathfrak{M} \mathbf{A}$ finite set of parameters from \mathfrak{M} .

• \mathscr{L}^+ — A recursive extension of $\mathscr{L}(\bar{a})$.

- \mathscr{L} A recursive language.
- $\blacksquare \mathfrak{M} \mathsf{An} \ \mathscr{L}\text{-structure.}$
- $\mathbf{a} \in \mathfrak{M} \mathbf{A}$ finite set of parameters from \mathfrak{M} .
- \mathscr{L}^+ A recursive extension of $\mathscr{L}(\bar{a})$.
- T A first-order theory in the language \mathscr{L}^+ .

- \mathscr{L} A recursive language.
- $\blacksquare \mathfrak{M} \mathsf{An} \, \mathscr{L}\text{-structure.}$
- $\mathbf{a} \in \mathfrak{M} \mathbf{A}$ finite set of parameters from \mathfrak{M} .
- \mathscr{L}^+ A recursive extension of $\mathscr{L}(\bar{a})$.
- *T* A first-order theory in the language ℒ⁺. *p*(*x*) a set of ℒ⁺ formulas.

- \mathscr{L}^+ A recursive extension of $\mathscr{L}(\bar{a})$.
- *T* A first-order theory in the language ℒ⁺. *p*(*x*) a set of ℒ⁺ formulas.
- \blacksquare We write $p\uparrow$ for the $\mathscr{L}^+_{\omega_1\omega}\text{-sentence}$

$$\forall x \neg \bigwedge p(x)$$

saying that p(x) is omitted (and $p \downarrow$ for $\exists x \land p(x)$ saying that p(x) is realized).

 \blacksquare We write $p\uparrow$ for the $\mathscr{L}^+_{\omega_1\omega}\text{-sentence}$

$$\forall x \neg \bigwedge p(x)$$

saying that p(x) is omitted (and $p\downarrow$ for $\exists x \land p(x)$ saying that p(x) is realized).

• We look at properties of the kind:

If "Theory of \mathfrak{M} " + $T + p\uparrow$ is somehow "consistent" then it is satisfied in some expansion of \mathfrak{M} (or in an expansion of an elementary submodel of \mathfrak{M}).

We look at properties of the kind:

If "Theory of \mathfrak{M} " + $T + p\uparrow$ is somehow "consistent" then it is satisfied in some expansion of \mathfrak{M} (or in an expansion of an elementary submodel of \mathfrak{M}).

The consistency notions we will look at are
Ordinary consistency, i.e., "there exists a model of" (Con(....)), and

We look at properties of the kind:

If "Theory of \mathfrak{M} " + $T + p\uparrow$ is somehow "consistent" then it is satisfied in some expansion of \mathfrak{M} (or in an expansion of an elementary submodel of \mathfrak{M}).

The consistency notions we will look at are

Ordinary consistency, i.e., "there exists a model of ..." (Con(...)), and

ω-saturation consistency; "there exists a model of ... whose L reduct is ω-saturated". (ω-SatCon_L(...))

- The consistency notions we will look at are
 - Ordinary consistency, i.e., "there exists a model of ..." (Con(...)), and
 - ω-saturation consistency; "there exists a model of ... whose L reduct is ω-saturated". (ω-SatCon_L(...))
- For first-order theories these are the same, but not for infinitary logics.

Im is recursively saturated if every recursive type in Im is realized.

- Im is recursively saturated if every recursive type in Im is realized.
- A Scott set is a subset of P(N) closed under union, complement, relative recursiveness and König's lemma (every infinite binary tree has an infinite path).

- Im is recursively saturated if every recursive type in Im is realized.
- A Scott set is a subset of P(N) closed under union, complement, relative recursiveness and König's lemma (every infinite binary tree has an infinite path).

Given a Scott set \mathfrak{X} , \mathfrak{M} is \mathfrak{X} -saturated if

 $\mathfrak{M}\vDash p(\bar{x},\bar{a}) \downarrow \quad \text{iff} \quad p(\bar{x},\bar{y})\in \mathfrak{X}$

for every complete type $p(\bar{x}, \bar{a})$ in \mathfrak{M} .

■ A Scott set is a subset of P(N) closed under union, complement, relative recursiveness and König's lemma (every infinite binary tree has an infinite path).

■ Given a Scott set X, M is X-saturated if

 $\mathfrak{M}\vDash p(\bar{x},\bar{a}) \downarrow \quad \text{iff} \quad p(\bar{x},\bar{y}) \in \mathfrak{X}$

for every complete type $p(\bar{x}, \bar{a})$ in \mathfrak{M} .

Every recursively saturated model M is X-saturated for some Scott set X.

Given a Scott set \mathfrak{X} , \mathfrak{M} is \mathfrak{X} -saturated if $\mathfrak{M} \vDash p(\bar{x}, \bar{a}) \downarrow$ iff $p(\bar{x}, \bar{y}) \in \mathfrak{X}$

for every complete type $p(\bar{x}, \bar{a})$ in \mathfrak{M} .

- Every recursively saturated model M is X-saturated for some Scott set X.
- Every X-saturated model is recursively saturated.

Resplendency

• A model \mathfrak{M} is *resplendent* if for every $\bar{a} \in \mathfrak{M}$, every recursive extension \mathscr{L}^+ of $\mathscr{L}(\bar{a})$ and every recursive T in \mathscr{L}^+ such that $\operatorname{Th}(\mathfrak{M}, \bar{a}) + T$ is consistent there is an expansion \mathfrak{M}^+ of \mathfrak{M} satisfying T.

Resplendency

- A model \mathfrak{M} is *resplendent* if for every $\bar{a} \in \mathfrak{M}$, every recursive extension \mathscr{L}^+ of $\mathscr{L}(\bar{a})$ and every recursive T in \mathscr{L}^+ such that $\operatorname{Th}(\mathfrak{M}, \bar{a}) + T$ is consistent there is an expansion \mathfrak{M}^+ of \mathfrak{M} satisfying T.
- Every countable recursively saturated model is resplendent, and every resplendent model is recursively saturated.

Subresplendency

• A model \mathfrak{M} is *subresplendent* if for every $\bar{a} \in \mathfrak{M}$, every recursive extension \mathscr{L}^+ of $\mathscr{L}(\bar{a})$ and every recursive T in \mathscr{L}^+ such that $\operatorname{Th}(\mathfrak{M}, \bar{a}) + T$ is consistent there is an elementary submodel $\bar{a} \in \mathfrak{N} \prec M$ and an expansion \mathfrak{N}^+ of \mathfrak{N} satisfying T.

Subresplendency

- A model \mathfrak{M} is *subresplendent* if for every $\overline{a} \in \mathfrak{M}$, every recursive extension \mathscr{L}^+ of $\mathscr{L}(\overline{a})$ and every recursive T in \mathscr{L}^+ such that $\operatorname{Th}(\mathfrak{M}, \overline{a}) + T$ is consistent there is an elementary submodel $\overline{a} \in \mathfrak{N} \prec M$ and an expansion \mathfrak{N}^+ of \mathfrak{N} satisfying T.
- A model is subresplendent iff it is recursively saturated.

A strong saturation property

• A model which is \mathfrak{X} -saturated for a Scott set \mathfrak{X} such that if $\overline{a} \in \mathfrak{M}$, $T, p \in \mathfrak{X}$ and ω -SatCon $\mathscr{L}(\operatorname{Th}(\mathfrak{M}, \overline{a}) + T + p\uparrow)$ then there exists a completion $T^c \in \mathfrak{X}$ of T such that ω -SatCon $\mathscr{L}(\operatorname{Th}(\mathfrak{M}, \overline{a}) + T^c + p\uparrow)$ is called p-saturated.

A strong saturation property

- A model which is \mathfrak{X} -saturated for a Scott set \mathfrak{X} such that if $\bar{a} \in \mathfrak{M}, T, p \in \mathfrak{X}$ and ω -SatCon $\mathscr{L}(\operatorname{Th}(\mathfrak{M}, \bar{a}) + T + p\uparrow)$ then there exists a completion $T^c \in \mathfrak{X}$ of T such that ω -SatCon $\mathscr{L}(\operatorname{Th}(\mathfrak{M}, \bar{a}) + T^c + p\uparrow)$ is called p-saturated.
- Every model has a *p*-saturated elementary extension of the same cardinality.

A strong saturation property

- Every model has a *p*-saturated elementary extension of the same cardinality.
- Every *p*-saturated countable model M is *p*-resplendent:

For all $\bar{a} \in \mathfrak{M}$ and all recursive T, p if $\omega - \operatorname{SatCon}_{\mathscr{L}}(\operatorname{Th}(\mathfrak{M}, \bar{a}) + T + p\uparrow)$ then there exists an expansion \mathfrak{M}^+ of \mathfrak{M} such that $\mathfrak{M}^+ \models T + p\uparrow$.

Analytic saturation

A model is analytically saturated if it is X-saturated for a Scott set X which satisfies all true second-order arithmetic sentences with parameters from X.

Analytic saturation

- A model is analytically saturated if it is X-saturated for a Scott set X which satisfies all true second-order arithmetic sentences with parameters from X.
- If $\mathfrak{M} \models PA$ is *p*-resplendent then it is analytically saturated.

Analytic saturation

- A model is analytically saturated if it is X-saturated for a Scott set X which satisfies all true second-order arithmetic sentences with parameters from X.
- If $\mathfrak{M} \models PA$ is *p*-resplendent then it is analytically saturated.
- Are analytic saturation and p-saturation equivalent for models of PA?

β -saturation

A model is β-saturated if it is X-saturated for a Scott set X which satisfies all true Σ₁¹ arithemtic sentences with parameters from X (i.e., X is a β-model).

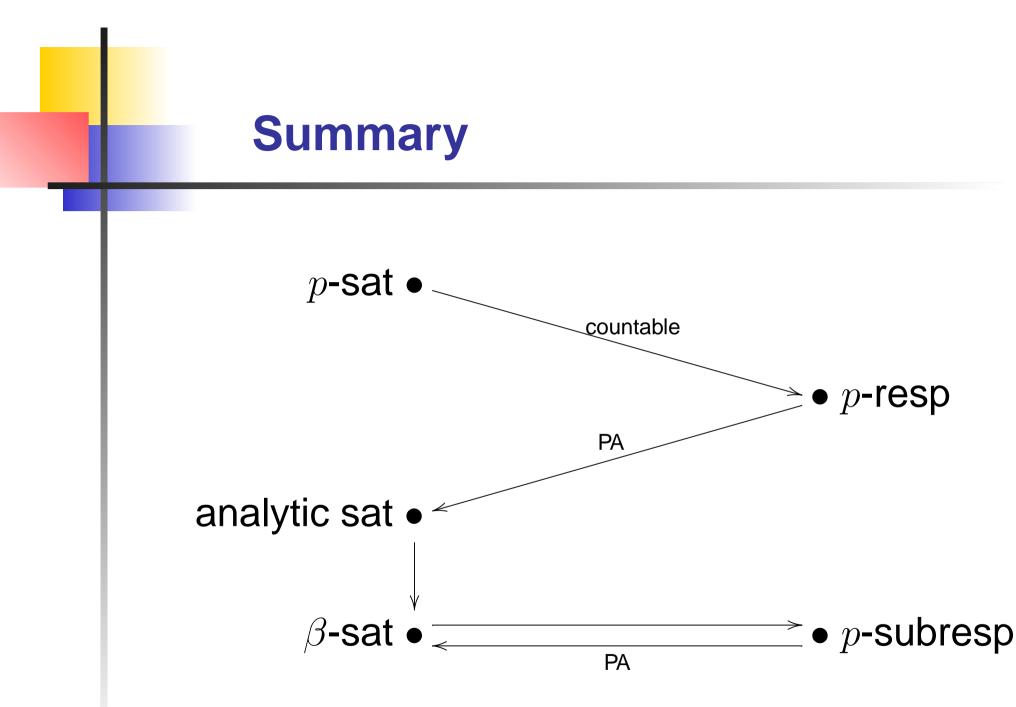
β -saturation

- A model is β-saturated if it is X-saturated for a Scott set X which satisfies all true Σ₁¹ arithemtic sentences with parameters from X (i.e., X is a β-model).
- Every β -saturated model \mathfrak{M} is *p*-subresplendent:

For all $\bar{a} \in \mathfrak{M}$ and all recursive T, p if $\operatorname{Con}(\operatorname{Th}(\mathfrak{M}, \bar{a}) + T + p\uparrow)$ then there exists an elementary submodel $\bar{a} \in \mathfrak{N} \prec \mathfrak{M}$ and an expansion \mathfrak{N}^+ of \mathfrak{N} such that $\mathfrak{N}^+ \models T + p\uparrow$.

β -saturation

- Every β -saturated model \mathfrak{M} is *p*-subresplendent:
 - For all $\bar{a} \in \mathfrak{M}$ and all recursive T, p if $\operatorname{Con}(\operatorname{Th}(\mathfrak{M}, \bar{a}) + T + p\uparrow)$ then there exists an elementary submodel $\bar{a} \in \mathfrak{N} \prec \mathfrak{M}$ and an expansion \mathfrak{N}^+ of \mathfrak{N} such that $\mathfrak{N}^+ \models T + p\uparrow$.
- If $\mathfrak{M} \models PA$ is *p*-subresplendent then it is β -saturated.



To come

A theory T (in an infinitary logic) is called *pervasive* over \mathfrak{M} if for any $\mathfrak{N} \succ \mathfrak{M}$ there is an $\mathfrak{K} \succ \mathfrak{N}$ and an expansion \mathfrak{K}^+ of \mathfrak{K} such that $\mathfrak{K}^+ \models T$.

To come

- A theory T (in an infinitary logic) is called *pervasive* over \mathfrak{M} if for any $\mathfrak{N} \succ \mathfrak{M}$ there is an $\mathfrak{K} \succ \mathfrak{N}$ and an expansion \mathfrak{K}^+ of \mathfrak{K} such that $\mathfrak{K}^+ \models T$.
- Replace ω -SatCon $_{\mathscr{L}}(Th(\mathfrak{M}, \bar{a}) + T + p\uparrow)$ with $T + p\uparrow$ is pervasive over \mathfrak{M} .