Resplendency and Omitting Types *Work in progress*

Fredrik Engström

engstrom@math.chalmers.se

These slides are available at:

http://www.math.chalmers.se/~engstrom.

BLC2002 - p.1/1

Question

Setup:

- \mathcal{L} A recursive language.
- M An \mathcal{L} -structure.
- \mathcal{L}^+ A recursive extension of \mathcal{L} .
- T A theory in \mathcal{L}^+ .
- p(x) a (semi-)type in T + Th(M).

Question: When does there exist an expansion of M to \mathcal{L}^+ satisfying T and omitting p(x).

Notation

- Def: A (semi-)type p(x) in a model M is a set of formulas with a finite number of parameters from M s.t. Th(M, a)_{a∈M} + p(c) is consistent.
- Def: A type p(x) is *complete* if p(c) is complete.
- Def: We will write $p\uparrow$ for the $\mathcal{L}^+_{\omega_1\omega}$ -sentence

$$\forall x \bigvee_{\psi(x) \in p(x)} \neg \psi(x)$$

saying that p(x) is omitted, and $p\downarrow$ for

$$\exists x \bigwedge p(x)$$

saying that p(x) is realized.

Recursive saturation

- **Def:** *M* is *recursively saturated* if every recursive type in *M* is realized.
- Def: A Scott set is a subset of P(N) closed under union, complement, relative recursiveness and König's lemma (every infinte binary tree has an infinite path).
- Def: Given a Scott set \mathfrak{X} , M is \mathfrak{X} -saturated if

 $\mathfrak{M}\vDash p(\bar{x},\bar{a}) {\downarrow} \quad \text{iff} \quad p(\bar{x},\bar{y}) \in \mathfrak{X}$

for every complete type $p(\bar{x}, \bar{a})$.

- Every countable recursively saturated model M is \mathfrak{X} -saturated for some countable Scott set \mathfrak{X} .
- Every \mathfrak{X} -saturated model is recursively saturated.

Resplendency

- Def: A model M is resplendent if for every recursive extension L⁺ of L and every recursive T in L⁺ such that Th(M) + T is consistent there is an expansion M⁺ of M satisfying T.
- Every countable recursively saturated model is resplendent, and every resplendent model is recursively saturated.

Thus, for countable M, resplendency is in fact a saturation property.

Arithmetical saturation

- Def: A model is arithmetically saturated if it is *X*-saturated for a Scott set *X* closed under the jump operation (or equivalenty closed under Σ₁ comprehension).
- There is a recursive theory *T* and a recursive type *p(x)* (in *T*) such that a countable recursively saturated model of PA is arithmetically saturated iff there is an expansion *M*⁺ of *M* such that *M*⁺ ⊨ *T* + *p*↑ (see [Kaye et al.(1991)Kaye, Kossak, and Kotlarski]).
- T expresses that g is an automorphism, and $p\uparrow$ expresses that g moves all non-definable points.

ω -saturation

Theorem 1. If *M* is a countable (ω -)saturated model then X(T, p) holds for every *T* and *p* such that $C_1(T, p)$ holds.

- Def: X(T, p) is 'there exists an expansion of M satisfying T and omitting p.'
- Def: $C_1(T, p)$ is 'there exists an ω -homogeneous model $N \succ M$ and an expansion N^+ of N such that $N^+ \vDash T + p \uparrow$.'

Analytic saturation

Theorem 2. If $M \models PA$ is such that X(T, p) holds for every recursive T and p such that $C_2(T, p)$ then M is analytical saturated.

- Def: $C_2(T, p)$ is 'there exists an ω -saturated model $N \models Th(M)$ and an expansion N^+ of N such that $N^+ \models T + p\uparrow$.'
- Def: A model is analytical saturated if it is *X*-saturated for a Scott set *X* closed under the hyperjump operation (or equivalenty a β-model closed under Σ₁¹ comprehension).

More saturation

Theorem 3. Let M be countable and \mathfrak{X} -saturated. If \mathfrak{X} is closed under completion in C_2 then for every $T, p \in \mathfrak{X}$

$$C_2(T,p) \Rightarrow X(T,p).$$

- Def: A scott set \mathfrak{X} is closed under completion in C_2 if for every $T, p \in \mathfrak{X}$ such that $C_2(T, p)$ holds there exists a completion $T^C \in \mathfrak{X}$ of T such that $C_2(T^C, p)$ holds.
- It is easy to see that for any countable Scott set \mathfrak{X} there is another countable Scott set \mathfrak{Y} such that \mathfrak{Y} is closed under completion in C_2 and $\mathfrak{X} \subseteq \mathfrak{Y}$.

Extra

Theorem 4. If a countable model M is analytical saturated then for every $T, p \in \mathfrak{X}$ (M is \mathfrak{X} -saturated) such that $C_3(T, p)$ holds there exists $N \prec M$ and an expansion N^+ of N such that $N^+ \models T + p\uparrow$.

• Def: $C_3(T,p)$ is 'there is model of $Th(M) + T + p\uparrow$.'

Theorem 5. If M is a model of PA such that for every recursive T, p satisfying C_3 there exists $N \prec M$ and an expansion N^+ of N such that $N^+ \models T, p$ then SSy(M) is a β -model.

Def: A set 𝔅 ⊆ 𝒫(ℕ) is a β-model if it models all Σ₁¹-sentences (in the language of arithmetic) true in ℕ.

Summary

 C_i ⇒ X means 'for all recursive extensions L⁺ and all recursive T and p(x) if C_i(T, p) holds then X(T, p) holds.

Saturation and consistency notions

- ω -sat: all types are realized.
- C_2 -sat: \mathfrak{X} -saturated for \mathfrak{X} closed under completion in C_2 .
- ana.sat.: \mathfrak{X} -saturated for \mathfrak{X} closed under analytical comprehension.
- C_1 : exists ω -homomorphic homomorphic homomorphi homomorphic homomorphi homomorphic homomorphic homomorphi
- C_2 : exists ω -saturated $N \succ M$ and expansion N^+ of N s.t. $N \vDash T + p\uparrow$

Summary (alt)

- $C_i \Rightarrow X$ is 'for all recursive extensions \mathcal{L}^+ , all recursive T and p(x) if $C_i(T, p)$ then X(T, p) holds.
- X'(T,p) is 'there exists $N^+ \vDash T + p^{\uparrow}$ such that $N^+ \prec_{\mathcal{L}} M$.

Saturation and consistency notions (alt)

- ω -sat: all types are realized.
- C_2 -sat: \mathfrak{X} -saturated for \mathfrak{X} closed under completion in C_2 .
- ana.sat.: \mathfrak{X} -saturated for \mathfrak{X} closed under analytical comprehension.
- β-sat: X-saturated for X s.t. all true Σ₁¹ sentences are true in X.
- C_1 : exists ω -homometric homometric h
- C_2 : exists ω -saturated $N \succ M$ and expansion N^+ of N s.t. $N \vDash T + p\uparrow$
- C_3 : exists N s.t. $N \vDash Th(M) + T + p\uparrow$.

References

References

[Kaye et al.(1991)Kaye, Kossak, and Kotlarski] Richard Kaye, Roman Kossak, and Henryk Kotlarski. Automorphisms of recursively saturated models of arithmetic. *Ann. Pure Appl. Logic*, 55(1):67–99, 1991. ISSN 0168-0072.