Background

Transplendent models

Subtransplendent models

Further

Transplendent models

Fredrik Engström
Preliminaries

- All models will be (expansions of) models of PA.
- All languages \mathcal{L} will be recursive extensions of the language of arithmetic, \mathcal{L}_A.
- The standard system of M, $\text{SSy}(M)$, is the collection of standard parts of (parameter) \mathcal{L}_A-definable sets in M.

$$\text{SSy}(M) = \{ X \cap \mathbb{N} \mid X \in \text{Def}(M') \} ,$$

where M' is the \mathcal{L}_A-reduct of M.
Recursive saturation

- A type over M is a set of formulas with finitely many parameters \bar{a} from M and finitely many free variables \bar{x} consistent with $\text{Th}(M, \bar{a})$.
- M is recursively saturated if all recursive types over M are realized in M.
- M is recursively saturated iff all types in $\text{SSy}(M)$ are realized in M.
- There is a Σ^1_1-sentence Θ such that a model is recursively saturated iff it satisfies Θ.
- Θ says that M-logic is consistent.
Resplendent models

- \(M \) is resplendent if for any theory \(T \) in an expanded language \(\mathcal{L} \supseteq \mathcal{L}_A \cup \{\bar{a}\} \) such that \(T + \text{Th}(M, \bar{a}) \) is consistent there is an expansion of \(M \) satisfying \(T \).
- All resplendent models are recursively saturated.
- All countable recursively saturated models are resplendent.
- There is a \(\Delta^1_2 \) sentence \(\Theta \) such that a model is resplendent iff it satisfies \(\Theta \).
- \(\Theta \) says that \(M \)-logic is consistent and that for every (non-standard) sentence \(\varphi \) consistent in \(M \)-logic there is a satisfaction class including \(\varphi \).
Subresplendent models

- M is subresplendent if for any theory T in an expanded language $\mathcal{L} \supseteq \mathcal{L}_A \cup \{\bar{a}\}$ such that $T + \text{Th}(M, \bar{a})$ is consistent there are an elementary submodel $\bar{a} \in N$ of M and an expansion of N satisfying T.

- A model is subresplendent iff it is recursively saturated.
Arithmetic saturation

- M is arithmetically saturated if for any type arithmetic in some $\text{Th}(M, \bar{a})$, $\bar{a} \in M$, is realized in M.
- M is arithmetically saturated iff M is recursively saturated and $\text{SSy}(M)$ is closed under arithmetic comprehension.
- A countable recursively saturated model M is arithmetically saturated iff there is a maximal automorphism, i.e. an automorphism f such that

$$\text{fix}(f) = \{ a \in M \mid f(a) = a \} = \text{Scl}_M(\emptyset).$$
Omitting types

- p^\uparrow is the $\mathcal{L}_{\omega_1\omega}$-sentence saying that p is omitted, i.e.,

$$\forall \bar{x} \bigvee \neg \psi(\bar{x})$$

$$\psi(\bar{x}) \in p(\bar{x})$$

- $p(x)$ is isolated in T if there is $\varphi(x)$ such that $T + \exists x \varphi(x)$ is consistent and $T \models \forall x (\varphi(x) \rightarrow \psi(x))$ for all $\psi(x) \in p(x)$.

- Omitting Types Theorem: If $p(x)$ is not isolated in T then $T + p^\uparrow$ is consistent.
Omitting types, two examples

- If M is countable and recursively saturated and $p(x)$ is a type which is not isolated in any $T + \text{Th}(M, \bar{a}, \bar{b})$ where $\bar{b} \in M$ (and these theories are consistent) then there is an expansion of M satisfying $T + p \uparrow$.

- Maximal automorphism: Let T_f say that f is an automorphism and
 \[p_f(x) = \{f(x) = x\} \cup \{x \neq t \mid t \text{ is a Skolem term}\}. \]
 f is a maximal automorphism of M iff $(M, f) \models T_f + p_f \uparrow$.
 p_f is isolated in $\text{Th}(M, a)$, where $a \notin \text{Scl}_M(\emptyset)$.

- Standard cut: Let $T_K = \{K(n) \mid n \in \mathbb{N}\}$ and
 \[p_K(x) = \{K(x)\} \cup \{x > n \mid n \in \mathbb{N}\}. \]
 K is the standard cut of M iff $(M, K) \models T_K + p_K \uparrow$.
 p_K is isolated in $\text{Th}(M, a)$, where a is non-standard.
Definition

- T and $p(x)$ are a theory and a type in an extended language \mathcal{L} with finitely many parameters \bar{a} from M. T_0 a \mathcal{L}_A theory.
- $T + p^\uparrow$ is fully consistent over T_0 if there is a model of $T_0 + T + p^\uparrow$ with standard system $\mathcal{P}(\mathbb{N})$ whose \mathcal{L}_A-reduct is recursively saturated.
- $T + p^\uparrow$ is fully consistent over M if it is fully consistent over $\text{Th}(M, \bar{a})$.
- Let $M \models \text{PA}$. We say that M is almost transplendent if for all $T, p(\bar{x}) \in \text{SSy}(M)$ such that $T + p^\uparrow$ is fully consistent over M, there is an expansion M^+ of (M, \bar{a}) such that $M^+ \models T + p^\uparrow$ and $\text{Th}(M^+, \bar{a}) + p^\uparrow$ is fully consistent over M. and $\text{Th}(M^+, \bar{a}) + p^\uparrow$ is fully consistent over M.

Fredrik Engström
Transplendent models
Existence

Theorem

There is a transplendent model of cardinality 2^{\aleph_0}.

Definition

A Scott set \mathcal{K} is closed if for any $T_0, T, p \in \mathcal{K}$ such that $T + p \uparrow$ is fully consistent over T_0 there is a completion $T_c \in \mathcal{K}$ of T such that $T_c + p \uparrow$ is fully consistent over T_0.

Theorem

Any countable recursively saturated model with a closed standard system is transplendent.
Closure is equivalent to transplendence

Given \(T, p \in \text{SSy}(M) \) such that \(T + p \uparrow \) is fully consistent over \(T_0 \) then the theory

\[
T + p \uparrow + \text{‘}c \text{ codes the theory of the model’}
\]

is fully consistent over \(T_0 \).

Theorem

Let \(M \) be a countable model of PA. \(M \) is transplendent iff \(M \) is recursively saturated and \(\text{SSy}(M) \) is closed.
The standard predicate

- Let $T_{K=\mathbb{N}}$ be the theory consisting of all $K(n), n \in \mathbb{N}$ together with p^\uparrow where $p(x) = \{K(x)\} \cup \{x > n \mid n \in \mathbb{N}\}$.
- $(M, K) \models T_{K=\mathbb{N}}$ iff $K = \mathbb{N}$.
- Clearly $T_{K=\mathbb{N}}$ is fully consistent over any T_0.
Second order arithmetic vs. the standard predicate

Given a second order \mathcal{L}_A-sentence Θ we translate it into a first order $\mathcal{L}_A(K)$-sentence Θ^K:

- $(t \in X)^K$ becomes $(x)_t \neq 0$
- $(\exists x \psi)^K$ becomes $\exists x (K(x) \land \psi^K)$
- $(\exists X \psi)^K$ becomes $\exists x \psi^K$

Theorem

$(M, \mathbb{N}) \models \Theta^K(\bar{a})$ iff $SSy(M) \models \Theta(\bar{A})$, where \bar{a} codes the sets \bar{A}.
Implications of transplendence

If $\mathcal{P}(\mathbb{N}) \models \Theta(\bar{A})$ then $T_{K=\mathbb{N}} + \Theta^K(\bar{a})$ is fully consistent over any T_0.

Theorem

If M is transplendent then $SSy(M) \prec \mathcal{P}(\mathbb{N})$.

Given $A \in SSy(M)$ then $T_{K=\mathbb{N}} + \text{`c codes } Th(\mathcal{P}(\mathbb{N}), A)\text{`} is fully consistent over any T_0.

Theorem

If M is transplendent then $Th(\mathcal{P}(\mathbb{N}), A) \in SSy(M)$ for every $A \in SSy(M)$.
Some basis theorems

- $\Gamma \subseteq \mathcal{P}(\mathbb{N})$ is a basis for $\Delta \subseteq \mathcal{P}(\mathcal{P}(\mathbb{N}))$ if $\forall X \in \Delta \ X \cap \Gamma \neq \emptyset$.
- $V = L$ implies that Δ^1_k is a basis for Σ^1_k for all $k \geq 2$.
- PD implies that Δ^1_k is a basis for Σ^1_k for all even $k \geq 2$.
- If $V = L$ or PD then Σ^1_∞ is a basis for Σ^1_∞.

Theorem

If $V = L$ or PD then if $\text{Th}(\mathcal{P}(\mathbb{N}), A) \in \mathcal{X}$ for every $A \in \mathcal{X}$ then $\mathcal{X} \prec \mathcal{P}(\mathbb{N})$.

Is this true in general?
Weakening ‘fully consistent’

Replacing ‘fully consistent’ with ‘consistent’ in the definition of transplendent models will not work: Let $p(x)$ be some type realized in M.

Theorem

There are recursive T, p such that

- For any type q over PA there is a model of $PA + T + q\downarrow + p\uparrow$.
- No recursively saturated model of PA has an expansion satisfying $T + p\uparrow$.

$T + p\uparrow$ is $T_{K=\mathbb{N}} + \text{‘Σ is a truth predicate’} + \text{‘there is an omitted coded type’}$.
What can be done if ‘fully consistent’ is weakened to ‘consistent’?

Definition

We say that M is *subtransplendent* if for all $T, p(\bar{x}) \in \text{SSy}(M)$ such that $T + p \uparrow + \text{Th}(M, \bar{a})$ is consistent there are an elementary submodel $(N, \bar{a}) \prec (M, \bar{a})$ and an expansion $N^+ \models T + p \uparrow$ of (N, \bar{a}).

Theorem

M is subtransplendent iff M is recursively saturated and for every $T, p \in \text{SSy}(M)$ such that $T + p \uparrow + \text{Th}(M, \bar{a})$ is consistent there is a completion $T_c \in \text{SSy}(M)$ of T making $T_c + p \uparrow + \text{Th}(M, \bar{a})$ consistent.
β-models

Definition

\(\mathcal{X} \subseteq \mathcal{P}(\mathbb{N}) \) is a \(\beta \)-model if \(\mathcal{X} \prec \Sigma_1 \mathcal{P}(\mathbb{N}) \).

Theorem

\(M \) is subtransplendent iff \(M \) is recursively saturated and \(\text{SSy}(M) \) is a \(\beta \)-model.

Transplendence implies subtransplendence.
The logic of omitting a type

- A Scott set \mathcal{X} is a β-model iff for every $T_0, T, p \in \mathcal{X}$ such that $T + p \uparrow + T_0$ is consistent there is a completion $T_c \in \mathcal{X}$ of T making $T_c + p \uparrow + T_0$ consistent.

- For every hyperarithmetic T and p the height of a (minimal) proof in the logic of omitting a type (a variant on ω-logic) is at most ω_1^{CK}.

- There are hyperarithmetic T and p such that the supremum of the heights of (minimal) proofs is ω_1^{CK}.

- The supremum of all heights of (minimal) proofs over all recursive T, p is at least ϵ_0.
Open questions

- Is it possible to replace fully consistency with something weaker?
- Almost transplendence implies transplendence?
- Nicer characterization of the standard systems of transplendent models.
- What’s the complexity of the notion of transplendence/subtransplendence?
- Is there a satisfaction class type property such that M is transplendent iff there is such a satisfaction class?