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Preliminaries

m All languages will be recursive extensions of
the language of arithmetic:

O%A:{—I—,-,O,l,<}.

= All models will be models of PA™, i.e., PA
together with induction axioms for the whole
language.
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Recursive saturation...

m A type p(z,a) over a model M is a set of
formulas with parameter a € M, such that
there is an elementary extension N of M and
element n € N satisfying N F p(n,a).

m M Is recursively saturated if all recursive
types over M are realized.

= Any model M has an elementary extension of
the same cardinality which is recursively
saturated.
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...continued

m SSy (M) is the standard system of M, i.e., the
collection of standard parts of parameter
definable sets; i.e., the collection of all sets of
the form{n e w| M E ¢(n,a) }, where a € M.

m [f M Is recursively saturated then any type
p(x,a) € SSy(M) over M is realized in M.



The standard predicate

m The standard predicate, st, is the predicate of
standard numbers.

= No model (M, st) is recursively saturated
since the type

{xr>nAst(z)|new}

IS omitted.



Standard recursive saturation

= A standard type over M is a type over (M, st)
such that there is an w-saturated elementary
extension of M realizing the type.

m A model Is standard recursively saturated
(std rec sat) If all recursive standard types are
realized.

m Any type over M (in which st Is not
mentioned) Is a standard type.



An equivalence

A countable recursively saturated model is std
rec sat Iff

for all standard types p(x,a) € SSy(M)
over (M, st) there is a complete standard
type q(z,a) € SSy(M) extending p(z, a).



The proof

m Lemma: If M is countable and std rec sat,
and M < N Is w-saturated then
(M,st) < (IV,st).

m Thus; any type tp s (m/a), where M is std
rec sat, Is a standard type.

= Let M be std rec sat, and p(xz,a) € SSy(M) a
std type. Let m € M realize p(x,a). Then,

p(x,a) C tparsy(m/a) € SSy(M).
< By a Henkin type construction.
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The standard system...

Let M be a std rec sat model. Then

(1) SSy(M) is a SB,-model of second-order
arithmetic, I1.e., as second order models
SSy(M) < Ny, where Ns is the standard
second-order model of arithmetic.

(2) SSy(M) is closed under the following
operation:

A C w— Th(NQ, A)
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...continued

m Under certain set-theoretic assumptions
(V = L or projective detereminacy) we have
(2) = (1).

m Question: Are conditions (1) and (2) also
sufficient, I.e., iIs any countable recursively
saturated model satisfying condition (1) and
(2) std rec sat?



The end

That's all folks!
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