A notion of recursive saturation for models of arithmetic with the standard predicate

FREDRIK ENGSTRÖM
RICHARD KAYE

These slides are available at:

http://engstrom.morot.org/

Preliminaries

All languages will be recursive extensions of the language of arithmetic:

$$\mathscr{L}_A = \{+,\cdot,0,1,<\}.$$

All models will be models of PA*, i.e., PA together with induction axioms for the whole language.

Recursive saturation...

- A type p(x,a) over a model M is a set of formulas with parameter $a \in M$, such that there is an elementary extension N of M and element $n \in N$ satisfying $N \models p(n,a)$.
- ullet M is recursively saturated if all recursive types over M are realized.
- Any model M has an elementary extension of the same cardinality which is recursively saturated.

...continued

- SSy(M) is the standard system of M, i.e., the collection of standard parts of parameter definable sets; i.e., the collection of all sets of the form $\{n \in \omega \mid M \models \varphi(n,a)\}$, where $a \in M$.
- If M is recursively saturated then any type $p(x, a) \in SSy(M)$ over M is realized in M.

The standard predicate

- The standard predicate, st, is the predicate of standard numbers.
- No model (M, st) is recursively saturated since the type

$$\{ x > n \wedge \operatorname{st}(x) \mid n \in \omega \}$$

is omitted.

Standard recursive saturation

- A standard type over M is a type over (M, st) such that there is an ω -saturated elementary extension of M realizing the type.
- A model is standard recursively saturated (std rec sat) if all recursive standard types are realized.
- Any type over M (in which st is not mentioned) is a standard type.

An equivalence

A countable recursively saturated model is std rec sat iff

for all standard types $p(x, a) \in SSy(M)$ over (M, st) there is a complete standard type $q(x, a) \in SSy(M)$ extending p(x, a).

The proof

- Lemma: If M is countable and std rec sat, and $M \prec N$ is ω -saturated then $(M, \operatorname{st}) \prec (N, \operatorname{st})$.
- Thus; any type $tp_{(M,st)}(m/a)$, where M is std rec sat, is a standard type.
- \Rightarrow Let M be std rec sat, and $p(x,a) \in \mathrm{SSy}(M)$ a std type. Let $m \in M$ realize p(x,a). Then, $p(x,a) \subseteq tp_{(M,\mathrm{st})}(m/a) \in \mathrm{SSy}(M)$.
- ← By a Henkin type construction.

The standard system...

Let M be a std rec sat model. Then

- (1) $\mathrm{SSy}(M)$ is a β_{ω} -model of second-order arithmetic, i.e., as second order models $\mathrm{SSy}(M) \prec \mathbb{N}_2$, where \mathbb{N}_2 is the standard second-order model of arithmetic.
- (2) SSy(M) is closed under the following operation:

$$A \subseteq \omega \mapsto \operatorname{Th}(\mathbb{N}_2, A).$$

...continued

- Under certain set-theoretic assumptions (V = L or projective detereminacy) we have $(2) \Rightarrow (1)$.
- Question: Are conditions (1) and (2) also sufficient, i.e., is any countable recursively saturated model satisfying condition (1) and (2) std rec sat?

The end

That's all folks!