Notions of resplendency for logics stronger than first-order logic

Fredrik Engström
Richard Kaye

These slides are available at:
http://engstrom.morot.org
Preliminaries

- All languages will be recursive, all extensions of languages recursive extensions.
- We will restrict ourselves to models of arithmetic, even though many of the results hold for arbitrary models.
Plan

We introduce three new variations on resplendency and recursive saturation:

- *transcendence*, resplendency for a specific infinitary language;
- *subtranscendence*, subresplendency for the same language; and
- *recursive standard saturation*, recursive saturation for a language with a standard predicate.
A type $p(x, a)$ over a model M is a set of formulas, with parameter $a \in M$, consistent with the theory of (M, a).

M is recursively saturated if all recursive types over M are realized.

Any model M has an elementary extension of the same cardinality which is recursively saturated.
SSy(M) is the standard system of $M \models \text{PA}$, i.e., the collection of standard parts of parameter definable sets; i.e., the collection of all $\{ n \in \omega \mid M \models \varphi(n, a) \}$, where $a \in M$.

If M is recursively saturated then any type $p(x, a) \in \text{SSy}(M)$ over M is realized in M.

...continued
A model M is *resplendent* if for every $a \in M$, every $\mathcal{L}^+ \supseteq \mathcal{L}(a)$, and every recursive T in \mathcal{L}^+ such that $\text{Th}(M, a) + T$ is consistent there is an expansion M^+ of M satisfying T.

Every countable recursively saturated model is resplendent, and every resplendent model is recursively saturated.
Stronger logics

- If $p(x, a)$ is a type, p^\uparrow stands for the infinitary sentence expressing that $p(x, a)$ is omitted.

- If T_0 is a first-order theory, T also first-order in an extended language, and $p(\bar{x})$ a type in the same language as T; then $\text{SatCon}(T + p^\uparrow/T_0)$ holds iff there is an ω-saturated model of T_0 with an expansion satisfying $T + p^\uparrow$.
A strong saturation property...

- If a recursively saturated model, M, satisfies that for all $T_0, T, p(x) \in SSy(M)$ such that $SatCon(T + p/T_0)$ there is a completion $T_c \in SSy(M)$ of T such that $SatCon(T_c + p/T_0)$; then M is said to be $SatCon$-saturated.

- Every model has a $SatCon$-saturated elementary extension of the same cardinality.
Every SatCon-saturated countable model M is *transcendent*:

For all $a \in M$ and all $T, p(x) \in SSy(M)$, in an extension of the language of (M, a), if SatCon$(T + p^\uparrow/\text{Th}(M, a))$ then there is an expansion M^+ of M such that $M^+ \models T + p^\uparrow$.

Is a transcendent model SatCon-saturated?
Subresplendency

- A model M is subresplendent if for every $a \in M$, every recursive extension \mathcal{L}^+ of $\mathcal{L}(a)$ and every recursive T in \mathcal{L}^+ such that $\text{Th}(M, a) + T$ is consistent there is an elementary submodel $a \in N \prec M$ and an expansion N^+ of N satisfying T.

- A model is subresplendent iff it is recursively saturated.
A recursively saturated model is \(\beta \)-saturated if \(\text{SSy}(M) \) is a \(\beta \)-model.

All \(\beta \)-saturated models are subtranscendent:

For all \(a \in M \) and all \(T, p(x) \in \text{SSy}(M) \), if \(\text{Th}(M, a) + T + p \uparrow \) is consistent then there is an elementary submodel \(a \in N \prec M \) and an expansion \(N^+ \) of \(N \) satisfying \(T + p \uparrow \).

In fact; a model is subtranscendent iff it is \(\beta \)-saturated.
The standard predicate

The standard predicate, st, is the predicate of standard numbers.

No model (M, st) is recursively saturated since the type

$$\{ x > n \land st(x) \mid n \in \omega \}$$

is omitted.
Standard recursive saturation

- A *standard type over* \mathcal{M} is a type over (\mathcal{M}, st) such that there is an ω-saturated elementary extension of \mathcal{M} realizing the type.

- A model is *recursively standard saturated* (rec std sat) if all recursive standard standard types are realized.

- Any type over \mathcal{M} (in which st is not mentioned) is a standard type.
An equivalence

A countable recursively saturated model is recursively saturated if and only if for all standard types $p(x, a) \in S\text{Sy}(M)$ over M there is a complete standard type $q(x, a) \in S\text{Sy}(M)$ extending $p(x, a)$.

We call this property SatCon^*-saturated.
Summary

SatCon-sat \bullet
countable
\rightarrow
trans

SatCon*-sat \bullet
countable
PA
\rightarrow
std rec sat

A \leftrightarrow tp_{N_2}(A)
PD or V=L
\rightarrow
\beta_\omega\text{-sat}

\beta\text{-sat} \bullet
PA
\rightarrow
subtrans

Notions of resplendency for logics stronger than first-order logic – p. 15
The end

That’s all folks!