Implicitly definable
Generalized Quantifiers

Filosofidagarna 2015, Linköping

Fredrik Engström, Göteborg

June 13, 2015
Generalized Quantifiers

A **generalized quantifier** Q of type $\langle n_1, n_2, \ldots, n_k \rangle$ is a (class) function mapping sets to sets:

$$M \mapsto Q_M \subseteq \mathcal{P}(M^{n_1}) \times \mathcal{P}(M^{n_2}) \times \ldots \times \mathcal{P}(M^{n_k}).$$

For simplicity consider only generalized quantifiers of type $\langle 1 \rangle$:

$$Q_M \subseteq \mathcal{P}(M).$$

Syntax: $Qx \varphi$. **Semantics:**

$$M \models Qx \varphi \text{ iff } \varphi(M) \in Q_M$$

- $\forall_M = \{ M \}$
- $\exists_M = \{ A \subseteq M \mid A \neq \emptyset \}$
- $(Q_0)_M = \{ A \subseteq M \mid |A| \geq \aleph_0 \}$
Logicality

Logic considers the **form** of sentences and arguments. To determine this form we need to know which the **logical constants** are.

Which of the generalized quantifiers should be considered **logical**?

The ones that are **topic neutral**. (Ryle, 1954)

- ‘Topic neutral’ as ‘not possible to discriminate between individuals’ gives an **invariance** criterion.
- ‘Topic neutral’ as ‘universally applicable’ gives an **inferential** account.
The inferential viewpoint

Logicality is the property of being characterizable (uniquely) by inference rules.
Thus, the meaning of conjunction is given by the rules:

\[
\begin{align*}
\varphi & \quad \psi \\
\hline
\varphi \wedge \psi & \\
\end{align*}
\]

Uniqueness: Introduce two new symbols \(\wedge_1 \wedge_2 \):

\[
\begin{align*}
\varphi & \quad \psi \\
\hline
\varphi \wedge_1 \psi & \\
\varphi \wedge_2 \psi & \\
\end{align*}
\]

Then \(\varphi \wedge_1 \psi \vdash \varphi \wedge_2 \psi \).
Let L_2 be **pure second order logic**:

- Individual variables: x, y, z, \ldots
- Predicate variables (including 0-ary) P, P_1, \ldots
- Formulas are built from predicate variables using $\neg, \lor, \land, \rightarrow, \forall, \exists$.

Semantics is **Henkin semantics**:

- A model M of L_2 is a pair of a set M and a set $\text{Pred}(M)$ of subsets of $\mathcal{P}(M^k)$, $k \geq 1$, for the predicate variables to range over.
Definability

- The language $L_2(Q)$ is L_2 extended with a second-order predicate symbol Q. Example: $\forall P Q(P)$.
- A model of $L_2(Q)$ gives an interpretation for Q as a second-order predicate, i.e., a subset of $\text{Pred}(M)$.
- We say that a sentence θ of $L_2(Q)$ implicitly defines a generalized quantifier Q if for every L_2 model M the only second-order predicate satisfying θ is $Q_M \cap \text{Pred}(M)$.
- A formula $\theta(P)$ of L_2 explicitly defines a generalized quantifier Q if for every L_2 model M, for every $R \in \text{Pred}(M)$:

 $$(M, R) \models \theta(P) \text{ iff } R \in Q_M.$$
According to Feferman’s (new) thesis on logicality:

A generalized quantifier Q is **logical** iff it is implicitly definable in L_2.

Main Theorem (Feferman)

Q is implicitly definable in L_2 iff it is (explicitly) definable in FOL.
Proof of the Main Theorem

Beth’s theorem

Suppose first-order logic. If

\[T, \sigma(P), \sigma(P') \models \forall \bar{x}(Px \leftrightarrow P'\bar{x}) \]

then there is a formula \(\varphi(\bar{x}) \) (without \(P \)) such that

\[T, \sigma(P) \models \forall \bar{x}(Px \leftrightarrow \varphi(\bar{x})). \]

Proof of the Main theorem is by:

- translating to many-sorted first-order logic,
- then using Beth’s theorem for many-sorted formulas (proved by Feferman in 1968) and
- then argue that the many-sorted formula explicitly defining \(Q \) is equivalent to a first-order formula defining \(Q \).
ALTERNATIVE proof of the main Theorem

Suppose Q of type $\langle 1 \rangle$ is implicitly defined by θ.
Fix a universe M and for every $A \subseteq M$ let

$$M_A = (M, \{ A \})$$

be the L_2 model in which the predicate variables range over the singleton set $\{ A \}$.
θ may not include n-ary predicate symbols for $n \geq 2$.
Let $Q'_M = \mathcal{P}(M)$ be the universally true second order predicate.
Then $(M_A, Q'_M) \models \theta$ iff $Q'_M \cap \{ A \} = Q_M \cap \{ A \}$ iff $A \in Q_M$.
Let φ be the first-order formula we get from θ by removing second-order quantifiers and replacing all predicate variables by the single predicate variable P. Also repacing all $Q(P)$ by \top. Then

$$(M, A) \models \varphi \text{ iff } (M_A, Q'_M) \models \theta \text{ iff } A \in Q_M$$

and thus φ defines Q.
CONCLUSIONS ...

The main theorem says that “plugging in” pure second-order logic into the machinery gives us first-order logic back, i.e.,

\[\text{Beth}^2(L_2, \text{FOL}). \]

However, this argument shows that this is for completely elementary reasons:

Pure second-order logic with Henkin semantics “is” just first-order logic.
...AND QUESTION

- In fact, the grounds for considering Henkin semantics are not clear.
- Also, we may observe that many inference rules can be formalized by a Π_1^1 formula.

Which quantifiers are implicitly definable in full second-order logic (i.e., second-order logic with standard semantics) with a Π_1^1 sentence?
THANK YOU!
Fredrik Engström.
Implicitly definable generalized quantifiers.

Solomon Feferman.
Which quantifiers are logical? a combined semantical and inferential criterion.
2012.