Non permutation invariant Borel quantifiers

Fredrik Engström University of Gothenburg, Sweden SELLC 2010 Guangzhou

Joint work with Philipp Schlicht

2010-12-05

Logical constants

An operator is to be counted as a logical constant if it is **topic neutral**.

- Examples: \exists , \forall , \neg , and \rightarrow .
- Non-examples: "There is a straight line such that..."

Mautner, Tarski, Mostowski, Lindenbaum: Logic is the the study of the invariants under the most general transformations (=permutations). (cf. Klein's Erlangen program)

Generalized quantifers

Definition (Mostowski)

A generalized quantifier Q of type $\langle n \rangle$ is a class of structures in the language $\{R\}$ where R is an n-ary relation symbol.

Examples:

•
$$\exists = \{ (M, A) \mid A \subseteq M, A \neq \emptyset \}$$

•
$$\forall = \{ (M, M) \mid M \}$$

•
$$Q_0 = \{ (M, A) \mid A \subseteq M, |A| \ge \aleph_0 \}$$

•
$$W = \{ (M, R) \mid R \subseteq M^2, R \text{ is well-founded} \}$$

• $Q^A = \{ (M, B) \mid A \subseteq B \}$ (principal)

•
$$\varphi(M) = \left\{ \ \bar{a} \in M^k \ \middle| \ M \models \varphi(\bar{a}) \right\}$$

• $M \models Q\bar{x} \varphi(\bar{x})$ iff $(M, \varphi(M)) \in Q$

Generalized quantifers contd.

Local versions: For a given domain M, let

$$Q_M = \left\{ R \subseteq M^k \mid (M, R) \in Q \right\}.$$

Definition

A (local) quantifier Q_M is definable on the domain M in the logic L if there is φ of L, such that

$$(M,R)\models \varphi$$
 iff $R\in Q_M$.

Fix a domain *M*. Quantifier now means **local** quantifier on *M*.

Logicality as invariance

Definition

Q is **fixed by/invariant under** a permutation *g* of *M* if g(Q) = Q, where $g(Q) = \{ g(R) | R \in Q \}$.

Tarski's thesis

A local quantifier on a domain M is a logical constant iff it is invariant under all **permutations** of M.

Examples: \exists, \forall, Q_0 Non-examples: Q^A

Theorem (McGee -91 / Krasner -38)

Q is permutation invariant iff there is a formula in $\mathscr{L}_{\infty\infty}$ defining *Q* on *M*.

Infinitary syntax

 $\mathscr{L}_{\infty\infty}$ is FOL with the infinitary operations:

- $\bigvee \Phi$, and
- ∃Xφ,

where Φ is any set of formulas and X any set of variables.

With the natural semantics attached.

 $\mathscr{L}_{\omega_1\omega}$ is FOL with the infinitary operation:

\/Φ,

where Φ is a countable set of formulas with at most finitely many free variables.

A Galois connection

 \mathcal{Q} is a set of quantifiers. G subgroup of the full symmetric group on M.

Definition

- Let Aut(𝒫) be the group of all permutations of M fixing all quantifiers in 𝒫: Aut(𝒫) = { g ∈ Sym(M) | g(Q) = Q for all Q ∈ 𝒫 }.
- Let Inv(G) be the set of quantifiers fixed by all permutations in G: Inv(G) = { Q | g(Q) = Q for all g ∈ G }.

Theorem (Krasner/Bonnay/E)

- Aut(Inv(G)) = G
- $Inv(Aut(\mathscr{Q}))$ is the set of quantifiers definable in $\mathscr{L}_{\infty\infty}(\mathscr{Q})$

The Borel hierarchy

Given relational lexicon τ , X_{τ} is the set of all τ structures on \mathbb{N} , a subset of X_{τ} is **open** if it is the union of sets of the form

$$\{ M \in X_{\tau} \mid M \models R_1(\bar{a}_1) \land \ldots \land R_k(\bar{a}_k) \}.$$

The **Borel sets** are built up from the open sets by complementation and countable unions: $\Sigma_0^B =$ open sets. $\Pi_{\alpha}^B =$ complements of Σ_{α}^B sets.

$$\Sigma_{\alpha}^{B} = \left\{ \bigcup_{i \in \mathbb{N}} A_{i} \middle| A_{i} \in \Pi_{\alpha_{i}}^{B}, \alpha_{i} < \alpha \right\}$$

The set of Borel sets is the union of all Σ^B_{α} for $\alpha \in \text{Ord}$. Borel sets are **predicative** and **set theoretic absolute**. Thus, a natural condition to put on logical constants.

Non permutation invariant Borel quantifiers Fredrik Engström University of Gothenburg, Sweden SELLC 2010 Guangzhou

Assume now all quantifiers are local quantifiers on \mathbb{N} . Thus a quantifier is nothing but a subset of X_{τ} .

Theorem (Lopez-Escobar (-65))

A quantifier is **Borel** and **permutation invariant** iff it is definable in $\mathscr{L}_{\omega_1\omega}$.

Indicates a strong connection between $\mathscr{L}_{\omega_1\omega}$ and Borel quantifiers. Does the Lopez-Escobar theorem generalize to $\mathscr{L}_{\omega_1\omega}(Q)$ as the result for $\mathscr{L}_{\infty\infty}$ does?

Non permutation invariant Borel quantifiers

FALSE

Q is Borel and Aut(\mathcal{Q}) invariant iff *Q* is definable in $\mathcal{L}_{\omega_1\omega}(\mathcal{Q})$.

Let $A \subseteq \mathbb{N}$ be infinite and coinfinite and $Q' = \{A\}$ then Q^A is Aut(Q') invariant, but not definable in $\mathscr{L}_{\omega_1\omega}(Q')$.

The **orbit** of \bar{a} under *G* is $\{ g(\bar{a}) \mid g \in G \}$.

Generalizations of Lopez-Escobar

Observation: Vaught's proof (-74) of the Lopez-Escobar theorem generalizes to:

Proposition

Suppose $G \leq Sym(\mathbb{N})$ is closed and \mathscr{F} is the family of G-orbits of tuples. A subset of X_{τ} is Borel and G-invariant iff it is definable in $\mathscr{L}_{\omega_1\omega}(\mathscr{F})$.

Since the automorphism group of any set of relations is closed we have the following.

Proposition

Every $Aut(\mathscr{R})$ -invariant Borel subset of X_{τ} is definable in $\mathscr{L}_{\omega_1\omega}(\mathscr{R})$.

What about quantifiers?

It follows that if $\operatorname{Aut}(Q)$ is closed and its orbits are definable in $\mathscr{L}_{\omega_1\omega}(Q)$ then a subset of X_{τ} is Borel and $\operatorname{Aut}(Q)$ -invariant iff it is $\mathscr{L}_{\omega_1\omega}(Q)$ definable.

Theorem

If Q is either

- good (a technical definition),
- clopen, or
- a finite boolean combination of Q^As,

then a subset of X_{τ} is Borel and Aut(Q)-invariant iff it is $\mathscr{L}_{\omega_1\omega}(Q)$ definable.

These three classes are subclasses of the Borel quantifiers. $\exists, \forall, Q_0 \text{ and } Q^A \text{ are all good.}$ In other words: Blnv(Aut(Q)) is the $\mathscr{L}_{\omega_1\omega}$ -closure of { Q }. Every subgroup G is Aut(Q) for some quantifier Q.

Theorem

Every closed subgroup G is Aut(Q) for some good quantifier Q.

Thus Aut(BInv(G)) = G for every closed subgroup G:

Aut(BInv(G)) = Aut(BInv(Aut(Q))) = Aut(Q) = G

Thanks