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Logical constants

An operator is to be counted as a logical constant if it is topic
neutral.

• Examples: ∃, ∀, ¬, and →.

• Non-examples: “There is a straight line such that. . . ”

Mautner, Tarski, Mostowski, Lindenbaum: Logic is the the study
of the invariants under the most general transformations
(=permutations). (cf. Klein’s Erlangen program)
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Generalized quantifers

Definition (Mostowski)

A generalized quantifier Q of type 〈n〉 is a class of structures in
the language { R } where R is an n-ary relation symbol.

Examples:

• ∃ = { (M,A) | A ⊆ M,A 6= ∅ }
• ∀ = { (M,M) | M }
• Q0 = { (M,A) | A ⊆ M, |A| ≥ ℵ0 }
• W =

{
(M,R)

∣∣ R ⊆ M2,R is well-founded
}

• QA = { (M,B) | A ⊆ B } (principal)

• ϕ(M) =
{

ā ∈ Mk
∣∣ M |= ϕ(ā)

}
• M |= Qx̄ ϕ(x̄) iff (M, ϕ(M)) ∈ Q
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Generalized quantifers contd.

Local versions: For a given domain M, let

QM =
{

R ⊆ Mk
∣∣∣ (M,R) ∈ Q

}
.

Definition

A (local) quantifier QM is definable on the domain M in the logic
L if there is ϕ of L, such that

(M,R) |= ϕ iff R ∈ QM .

Fix a domain M.
Quantifier now means local quantifier on M.
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Logicality as invariance

Definition

Q is fixed by/invariant under a permutation g of M if
g(Q) = Q, where g(Q) = { g(R) | R ∈ Q }.

Tarski’s thesis

A local quantifier on a domain M is a logical constant iff it is
invariant under all permutations of M.

Examples: ∃, ∀,Q0

Non-examples: QA

Theorem (McGee -91 / Krasner -38)

Q is permutation invariant iff there is a formula in L∞∞ defining
Q on M.
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Infinitary syntax

L∞∞ is FOL with the infinitary operations:

•
∨

Φ, and

• ∃Xϕ,

where Φ is any set of formulas and X any set of variables.

With the natural semantics attached.

Lω1ω is FOL with the infinitary operation:

•
∨

Φ,

where Φ is a countable set of formulas with at most finitely many
free variables.
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A Galois connection
Q is a set of quantifiers. G subgroup of the full symmetric group
on M.

Definition

• Let Aut(Q) be the group of all permutations of M fixing all
quantifiers in Q:
Aut(Q) = { g ∈ Sym(M) | g(Q) = Q for all Q ∈ Q } .

• Let Inv(G ) be the set of quantifiers fixed by all permutations
in G : Inv(G ) = { Q | g(Q) = Q for all g ∈ G }.

Theorem (Krasner/Bonnay/E)

• Aut(Inv(G )) = G

• Inv(Aut(Q)) is the set of quantifiers definable in L∞∞(Q)
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The Borel hierarchy
Given relational lexicon τ , Xτ is the set of all τ structures on N, a
subset of Xτ is open if it is the union of sets of the form

{M ∈ Xτ | M |= R1(ā1) ∧ . . . ∧ Rk(āk) } .

The Borel sets are built up from the open sets by
complementation and countable unions:
ΣB

0 = open sets.
ΠB
α = complements of ΣB

α sets.

ΣB
α =

{ ⋃
i∈N

Ai

∣∣∣∣∣ Ai ∈ ΠB
αi
, αi < α

}

The set of Borel sets is the union of all ΣB
α for α ∈ Ord.

Borel sets are predicative and set theoretic absolute. Thus, a
natural condition to put on logical constants.
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Borel quantifiers

Assume now all quantifiers are local quantifiers on N. Thus a
quantifier is nothing but a subset of Xτ .

Theorem (Lopez-Escobar (-65))

A quantifier is Borel and permutation invariant iff it is definable
in Lω1ω.

Indicates a strong connection between Lω1ω and Borel quantifiers.
Does the Lopez-Escobar theorem generalize to Lω1ω(Q) as the
result for L∞∞ does?

Non permutation invariant Borel quantifiers Fredrik Engström University of Gothenburg, Sweden SELLC 2010 Guangzhou



Non permutation invariant Borel quantifiers

FALSE

Q is Borel and Aut(Q) invariant iff Q is definable in Lω1ω(Q).

Let A ⊆ N be infinite and coinfinite and Q ′ = { A } then QA is
Aut(Q ′) invariant, but not definable in Lω1ω(Q ′).

The orbit of ā under G is { g(ā) | g ∈ G }.
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Generalizations of Lopez-Escobar

Observation: Vaught’s proof (-74) of the Lopez-Escobar theorem
generalizes to:

Proposition

Suppose G ≤ Sym(N) is closed and F is the family of G -orbits of
tuples. A subset of Xτ is Borel and G -invariant iff it is definable in
Lω1ω(F ).

Since the automorphism group of any set of relations is closed we
have the following.

Proposition

Every Aut(R)-invariant Borel subset of Xτ is definable in
Lω1ω(R).
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What about quantifiers?
It follows that if Aut(Q) is closed and its orbits are definable in
Lω1ω(Q) then a subset of Xτ is Borel and Aut(Q)-invariant iff it is
Lω1ω(Q) definable.

Theorem

If Q is either

• good (a technical definition),

• clopen, or

• a finite boolean combination of QAs,

then a subset of Xτ is Borel and Aut(Q)-invariant iff it is Lω1ω(Q)
definable.

These three classes are subclasses of the Borel quantifiers. ∃, ∀,
Q0 and QA are all good.
In other words: BInv(Aut(Q)) is the Lω1ω-closure of { Q }.
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The other way

Every subgroup G is Aut(Q) for some quantifier Q.

Theorem

Every closed subgroup G is Aut(Q) for some good quantifier Q.

Thus Aut(BInv(G )) = G for every closed subgroup G :

Aut(BInv(G )) = Aut(BInv(Aut(Q))) = Aut(Q) = G
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Thanks
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