A maximal semantics for dependence logic

Logic Colloquium 2015, Helsinki

Fredrik Engström

August 4, 2015

INTRODUCTION	Monotone	Non-monotone	Outro
•0	00000	0000	00

TEAM SEMANTICS

- Team semantics: Lifting semantic values (of formulas) from sets of assignment to sets of sets of assigments (sets of teams).
- ► Flatness property of FO: A first-order formula is satisfied by a team iff all assignments satisfy the formula.
- Subteam property: If a team satisfies a formula so does each subteam.

The subteam property fails in some logics, e.g., independence logic and exclusion logic.

This talk introduces a logic in which flatness fails.

INTRODUCTION	Monotone	Non-monotone	Outro
0●	00000	0000	00

Dependence Logic

- ► $\phi ::= \gamma \mid \phi \land \phi \mid \phi \lor \phi \mid \exists x \phi \mid \forall x \phi$, where γ is a literal or dependence atom.
- $M \vDash \sigma$ iff $M, \{\emptyset\} \vDash \sigma$.
- $M, X \vDash \gamma$ if for all $s \in X$: $M, s \vDash \gamma$, where γ is a literal.
- $M, X \vDash = (\overline{t}, t')$ if for all $s, s' \in X$ if $s(\overline{t}) = s'(\overline{t})$ then s(t') = s'(t').
- $M, X \vDash \phi \land \psi$ if $M, X \vDash \phi$ and $M, X \vDash \psi$.
- ► $M, X \vDash \phi \lor \psi$ if there are $Y \cup Z = X$ such that $M, Y \vDash \phi$ and $M, Z \vDash \psi$.
- $M, X \vDash Qx \phi$ if there is $F: X \rightarrow Q_M$ s.t. $M, X[F/x] \vDash \phi$.

$$\blacktriangleright \forall_M = \{ M \}$$

- $\bullet \ \exists_M = \{ A \subseteq M \mid A \neq \emptyset \}$
- ► $X[F/x] = \{ s[a/x] \mid s \in X \text{ and } a \in F(s) \}$

00 0000 0000 00	Introduction	Monotone	Non-monotone	Outro
••••••	00	●0000	0000	00

GENERALIZED QUANTIFIERS

A generalized quantifier Q is a class of structures closed under isomorphisms.

$$\bullet \ Q_M = \{ R \mid (M, R) \in Q \}.$$

 $Q_M \subseteq \mathcal{P}(M).$

 $M, s \vDash Qx \phi \text{ iff } \phi^{M,s} \in Q_M$

$$\blacktriangleright \forall_M = \{ M \}$$

$$\bullet \ \exists_M = \{ A \subseteq M \mid A \neq \emptyset \}$$

$$\bullet (Q_1)_M = \{ A \subseteq M \mid |A| \ge \aleph_1 \}$$

Q is **monotone increasing** if $A \subseteq B$ and $A \in Q_M$ implies $B \in Q_M$.

00000 0000 0000	Introduction	Monotone	Non-monotone	Outro
	00	0000	0000	00

Generalized quantifiers in dependence logic

Works well only for monotone increasing generalized quantifiers.

• $M, X \vDash Qx \phi$ iff there is $F: X \to Q_M$ such that $M, X[F/x] \vDash \phi$.

$$X[F/x] = \{ s[a/x] | s \in X, a \in F(s) \}$$

Example: M, $\{s_0, s_1\} \vDash \exists^{\geq 2} z Rxyz$

Introduction	Monotone	Non-monotone	Outro
00	0000	0000	00

ITERATION AND BRANCHING

ITERATION

$$(Q_1 \cdot Q_2)_M = \{ R \subseteq M^2 \mid \{ a \mid {}_aR \in (Q_2)_M \} \in (Q_1)_M \}$$

 $(Q_1 \cdot Q_2) xy \phi \equiv Q_1 x Q_2 y \phi$

For monotone increasing quantifiers:

 $Br(Q_1, Q_2)_M = \left\{ R \subseteq M^2 \mid A \times B \subseteq R, A \in (Q_1)_M, B \in (Q_2)_M \right\}$

$$\operatorname{Br}(Q_1, Q_2) x y \phi \equiv \begin{pmatrix} Q_1 x \\ Q_2 y \end{pmatrix} \phi$$

Introduction	Monotone	Non-monotone	Outro
00	00000	0000	00

Properties of D(Q)

- Empty set property: $M, \emptyset \vDash \phi$
- ▶ **Downwards closure**: If $Y \subseteq X$ and $M, X \vDash \phi$ then $M, Y \vDash \phi$.

Flattness of FO(Q)

```
M, X \vDash \phi iff for all s \in X, M, s \vDash \phi
```

for all FO(Q)-formulas ϕ .

Respect iteration

 $M, X \vDash (Q_1 \cdot Q_2) xy \phi$ iff $M, X \vDash Q_1 x Q_2 x \phi$

Express branching

 $D(Q) \equiv D(Q, \operatorname{Br}(Q, Q))$

Introduction	Monotone	Non-monotone	Outro
00	0000	0000	00

STRENGTH AND AXIOMATIZABILITY

THEOREM (E., Kontinen)

$$D(Q) \equiv \text{ESO}(Q)$$

Let $\Gamma \vDash_w \phi$ mean that $\Gamma \vDash \phi$ for any monotone increasing interpretation of Q.

THEOREM (E., Kontinen, Väänänen)

There is a a sound and complete inference system wrt the following consequence relations:

- $\Gamma \vDash_{w} \phi$ where ϕ is FO (Q, \check{Q}) .
- $\Gamma \vDash \phi$ where ϕ is FO (Q_1, \check{Q}_1) .

Introduction	Monotone	Non-monotone	Outro
00	00000	0000	00

Non-monotone quantifiers

 $M \vDash \exists^{=5} x P x$

$$\exists F: \{ \emptyset \} \to \exists_M^{=5}, \text{ s.t. } M, \{ \emptyset \} [F/x] \vDash Px$$

$$\exists A \subseteq M, \text{ s.t. } |A| = 5 \text{ and } A \subseteq P^M$$

$$M \vDash \exists^{\geq 5} x P x$$

 ϕ is satisfied by X if

- every assignment $s \in X$ satisfies ϕ .
- every assignment $s \in X$ satisfies ϕ .
- for every assignment $s : \text{dom}(X) \to M^k$, $s \in X$ iff s satisfies ϕ .

$$M, X \vDash_m \phi$$
 iff $X = \phi^M$ (for first-order ϕ).

Introduction	Monotone	Non-monotone	Outro
00	00000	0000	00

MAXIMAL SEMANTICS

- ► $M, X \vDash_m \psi$ if $M, X \vDash \psi$ and for all $Y \supseteq X : M, Y \nvDash \psi$, for literals ψ .
- ► $M, X \vDash_m \phi \land \psi$ if $\exists Y, Z$ s.t. $X = Y \cap Z$, and both $M, Y \vDash_{\phi} \phi$ and $M, Z \vDash_{\psi} \psi$
- ► $M, X \vDash_m \phi \lor \psi$ if $\exists Y, Z$ s.t. $X = Y \cup Z$, and both $M, Y \vDash_{\phi} \phi$ and $M, Z \vDash_{\psi} \psi$
- $M, X \vDash_m Qx \phi$ if $\exists Y$ s.t. Qx Y = X and $M, Y \vDash \phi$

 $QxX = \{ s : \operatorname{dom}(X) \setminus \{ x \} \to M \mid \{ a \in M \mid s[a/x] \in X \} \in Q_M \}$

INTRODUCTION MONOT	FONE	Non-monotone	Outro
00 0000	0	0000	00

PROPERTIES OF MAXIMAL SEMANTICS

- "Maximal dependence logic", D_m , is contained in ESO.
- If $M, X \vDash_m \phi$ then $M, X \vDash \phi$.
- For each ϕ there is *X* satisfying ϕ .
- ► There is a formula θ such that $M, X \vDash_m \theta$ if $|M| \ge 2$ and $\operatorname{dom}(X) = \operatorname{FV}(\theta)$.
- There is a translation $^+: \phi \mapsto \phi^+$ such that

 $M, X \vDash \phi \text{ iff } M, X \vDash_m \phi^+,$

for all teams X with dom $(X) = FV(\phi)$.

- Thus, $D \leq D_m$ (and $D \equiv D_m$).
- The independence atom is definable in D_m .

In fact, by adding a "universally true" atom to FO (and using maximal semantics) both the dependence and the independence atom are definable.

Introduction	Monotone	Non-monotone	Outro
00	00000	000●	00

 $D_m(Q)$

Conservativity over FO(Q)

$$M, X \vDash_m \phi \text{ iff } X = \phi^M$$

for all FO(Q)-formulas ϕ .

Respect iteration

 $M, X \vDash_m (Q_1 \cdot Q_2) xy \phi$ iff $M, X \vDash_m Q_1 x Q_2 x \phi$

Strength

$$D_m(Q) \equiv D(Q) \equiv ESO(Q)$$

for monotone increasing Q.

00000	0000	•0
,	0000	0000 0000

Conclusion

- ► Extending dependence logic with **montone increasing** generalized quantifiers is a natural and stable extension.
- ► There is a way to introduce non-monotone quantifiers by altering the basic semantics.

Open questions

- ► $D_m(Q) \equiv D_m(Q, \operatorname{Br}(Q, Q))$? (whenever $\operatorname{Br}(Q, Q)$ makes sense)
- $D_m(Q) \equiv ESO(Q)$?

THAT'S ALL FOLKS!

Introduction	Monotone	Non-monotone	Outro
00	00000	0000	00

- Fredrik Engström. Generalized quantifiers in dependence logic. Journal of Logic, Language and Information, 21:299–324, 2012. ISSN 0925-8531.
- Fredrik Engström and Juha Kontinen. Characterizing quantifier extensions of dependence logic. Journal of Symbolic Logic, 78(1):307–316, 2013.
- Fredrik Engström, Juha Kontinen, and Jouko Väänänen. Dependence logic with generalized quantifiers: Axiomatizations. Journal of Computer and System Sciences, to appear.