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Some relative of each villager and some relative of each townsmen hate
each other.

Vx3dy
(4257) Al oz

Most philosophers and most linguists agree with each other about

branching quantification.
Qix
(&%) Ay
Q2y
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GENERALIZED QUANTIFIERS
A generalized quantifier Q is a class of structures closed under iso-
morphism in a fixed signature.

> Ou={R[(MR) € Q}.

Ou € P(M).

M,sE Ox¢ iff ¢M* e Oy

v

Vu={M}
ImM={ACM|A#0D}
(Q)m={AC M| |A] =R }
(Qm={ACM||A] >N }

» (Qr)m={ACM||A] > |M\Al}

v

v

v

Qis monotone increasing if A C Band A € Qy implies B € Qy.
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BRANCHING

O1x
<Q2y> ¢

For monotone increasing quantifiers:

Br(Q1, %)y ={RC M | AXBC R AE(Q1)mBE (Q2)um}

Br(Q1, Qo)xy¢ = (le) ¢

Qay

ITERATION

NON-MONOTONE

(o]e]

(Q1-®)u={RCM |{a|Re(Q)u}e(Q)um}

(01 Q)xyp = Q1xQ2y ¢

OuTRO
[¢]
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DEPENDENCE LoGIC WITH Q

Only monotone increasing unary quantifiers.
> D(Q)is¢==7[9Nd[OVo[Ixg|Vxe | Qxo,
where 7 is a literal or dependence atom.
» ME o iff M, {0} F 0.

v

M, X E ~if for all s € X: M, s F ~, where + is a literal.

M, XE =(t,¢) ifforall 5,5 € Xif s(¢) = §/(¢) then s(¢') = s/ ().
M, XE o NYif M, XE ¢ and M, X F 1.

M, XE ¢V  if there are YU Z = X such that M, YF ¢ and

M, ZE .

v

v

v

» M, XF 3x¢ifthereis f: X - Ms.t. M, X[f/x] E ¢
> M, XE Vx¢ if M, X|M/x] E ¢
X[f/x] = {s[fls)/x] | s€ X} and X[M/x] = { s[a/x] | s€ X,ae M}
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M, XE Qx¢?
CONSERVATIVE OVER FO(Q)
M, XE ¢iffforallse X,M,sE ¢

for all FO(Q)-formulas ¢.

RESPECT THE QUANTIFIERS
The truth conditions of 3 and V should be special cases of the general
condition.

RESPECT ITERATION

M, XFE (Q1-Q2)xy¢ iff M,XFE Q1xQox¢

EXPRESS BRANCHING
Be able to express

Br(Q1, Q2)xy ¢.
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QEJANTIFIERS IN DEPENDENCE LOGIC

» M, XFE Qx¢ iff there is F: X — Qy such that M, X [F/x] E ¢.

X[F/x| ={sla/x] | s€ X,a€ F(s) }
Example: M, {so, s1} F 322z Rxyz

M

OuTRO
[¢]
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PROPERTIES OF DEPENDENCE LOGIC

» M0 E ¢
» Downwards closure: If Y C Xand M, XE ¢ then M, YE ¢.
» Branching of generalized quantifiers is expressible in D(Q).

Br(Q, Q)xy¢(x, y,2) =

=0xQy(x Lz yA p(x, y,2))
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STRENGTH

THEOREM
D(Q) =ESO(Q)

THEOREM
Every D(Q) formula is equivalent to one of the form:

Hixi . H™xp3yr .. Ty ( /\ =(x,y;) N 0),

1<i<n

where H' is either Q or V, and 6 is a quantifier-free FO formula.
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> é is the dual of O: “Q0 = —=Q—"

Axiomatize FO(Q, Q) consequences.
IDEA:

NON-MONOTONE OuTRO
(o]e] [¢]

» Construct a natural deduction system in which the normal form

can be derived.

» Allow dependencies in normal forms to be replaced by finite

approximations.

» Show that in enough models (recursively saturated) the set of
finite approximations is equivalent to the original sentence.
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~

Ax10MATIZING D(Q, Q) I: GENERAL RULES

~

» Standard rules for FO(Q, Q) formulas.

» Standard rules for conjunction, existential quantifier, and
universal quantifier.

» Commutativity, associativity and monotonicity of disjunction.

» Monotonicity, extending scope, and renaming of bound
variables for Q and Q.

» Duality of Q with respect to FO(Q, Q) formulas.
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~

Ax10MATIZING D(Q, Q) II: DEPENDENCE RELATED RULES

» Unnesting:
=(t1y .y ty)
Fz(=(t1, ey 2y ooy ) N2 = 1)

where z is a new variable.
» Dependence distribution:

I 3N <jcn =F ) A D)V Fyntt - Bym( A1 <jcm =F, 7)) A )
Jyr ... Eym(/\1§j§m :(Ejv yj) A (d) 4 Tl’))

where ¢ and 1) are quantifier free FO formulas.

» Dependence introduction:

IxHyod
HyIx(=(z,%) A §)

where  lists the variables in FV(¢) — {x, y} and H € {V, O, O}.
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APPROXIMATIONS

Suppose ¢ is in normal form:

Hxy o H xmIyn - Ty /\ =(x, ;) ANO(x,)).

1<i<n
Let A¥ o be
Va3 vadaw( N\ R®) =\ 0, 3) A
1<j<k 1<j<k
/\ (x = 5‘} = Yij = Yiy))
1<i<n
1<,/ <k
Let Bo be
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~

Ax1oMATIZING D(Q, Q) IIl: THE APPROXIMATION RULE

[Bo] [AF o]

? ” Ld (Approx)

where o is a sentence in normal form, and R does not appear in v
nor in any uncancelled assumptions in the derivation of v, except
for Bo and AFo.
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COMPLETENESS FOR WEAK SEMANTICS

LetI' F,, ¢ mean that I' F ¢ for any monotone increasing
(non-trivial) interpretation of Q (and Q is interpreted as the dual of
the interpretation of Q).

THEOREM
This system is sound and complete wrt I E,, ¢ where ¢ is FO(Q, Q).
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NON-MONTONE QUANTIFIERS

Br(Qi, Q2) may be defined for a rather wide range of quantifiers.

ME 3%xPx

ME I=°xPx

a formula ¢ is satisfied by a team X if for every assignment
s: dom(X) — MF, if s € X then s satisfies ¢.

a formula ¢ is satisfied by a team X if for every assignment
s: dom(X) — Mk, s € X iff s satisfies .

Le., M, X E ¢ iff X = ¢(M) (for first-order ¢).
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MAXIMAL SEMANTICS

» M, XF,Yif M,XFyandforal Y2 X: M, YF , for literals

.

» MMXFE,oANYifdY,Zst. X=YNZ andboth M, YFE
¢and M, ZE 1

» M XE,, ¢VyifdY,Zst. X=YUZ and both M, YE
¢and M, Z F 1

> MXE, Ox¢ifdYst. OxY= Xand M, YF ¢
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CONCLUSION

Extending dependence logic with generalized quantifiers is a natural
and stable extension.

v

D(Q) properly extends both FO(Q) and D.
D(Q) is equivalent to ESO(Q).

D(Q) has a prenex normal form theorem.

v

v

v

Similar completeness results as for D.

What about non-monotonic quantifiers?

THAT’S ALL FOLKS!
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