INTRODUCTION	Generalized quantifiers in D	Axiomatization	Non-monotone	Outro
0000	00000	000000	00	0

DEPENDENCE LOGIC AND GENERALIZED QUANTIFIERS Logics for Dependence and Independence, Dagstuhl

Fredrik Engström

June 26, 2015

INTRODUCTION	Generalized quantifiers in D	Axiomatization	Non-monotone	Outro
0000	00000	000000	00	0

- Fredrik Engström. Generalized quantifiers in dependence logic. Journal of Logic, Language and Information, 21:299–324, 2012. ISSN 0925-8531.
- Fredrik Engström and Juha Kontinen. Characterizing quantifier extensions of dependence logic. Journal of Symbolic Logic, 78(1):307–316, 2013.
- Fredrik Engström, Juha Kontinen, and Jouko Väänänen. Dependence logic with generalized quantifiers: Axiomatizations. Journal of Computer and System Sciences, to appear.

INTRODUCTION	Generalized quantifiers in D	Axiomatization	Non-monotone	Outro
0000	00000	000000	00	0

Some relative of each villager and some relative of each townsmen hate each other.

$$\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix} A(x, y, z, w)$$

Most philosophers and most linguists agree with each other about branching quantification.

$$\begin{pmatrix} Q_1 x \\ Q_2 y \end{pmatrix} A(x, y)$$

INTRODUCTION	Generalized quantifiers in D	Axiomatization	Non-monotone	Outro
0000	00000	000000	00	0

GENERALIZED QUANTIFIERS

A generalized quantifier Q is a class of structures closed under isomorphism in a fixed signature.

$$\blacktriangleright Q_M = \{ R \mid (M, R) \in Q \}.$$

 $Q_M \subseteq \mathcal{P}(M).$

$$M, s \vDash Qx \phi \text{ iff } \phi^{M,s} \in Q_M$$

$$\blacktriangleright \ \forall_M = \{ M \}$$

$$\bullet \ \exists_M = \{ A \subseteq M \mid A \neq \emptyset \}$$

$$\blacktriangleright (Q_0)_M = \{ A \subseteq M \mid |A| \ge \aleph_0 \}$$

$$\blacktriangleright (Q_1)_M = \{ A \subseteq M \mid |A| \ge \aleph_1 \}$$

$$\blacktriangleright (Q_R)_M = \{ A \subseteq M \mid |A| > |M \setminus A| \}$$

Q is **monotone increasing** if $A \subseteq B$ and $A \in Q_M$ implies $B \in Q_M$.

INTRODUCTION	Generalized quantifiers in D	Axiomatization	Non-monotone	Outro
0000	00000	000000	00	0

Branching

$$\begin{pmatrix} Q_1 x \\ Q_2 y \end{pmatrix} \phi$$

For monotone increasing quantifiers:

 $\operatorname{Br}(Q_1, Q_2)_M = \left\{ R \subseteq M^2 \mid A \times B \subseteq R, A \in (Q_1)_M, B \in (Q_2)_M \right\}$

$$\operatorname{Br}(Q_1, Q_2) x y \phi \equiv \begin{pmatrix} Q_1 x \\ Q_2 y \end{pmatrix} \phi$$

Iteration $(Q_1 \cdot Q_2)_M = \{ R \subseteq M^2 \mid \{ a \mid {}_aR \in (Q_2)_M \} \in (Q_1)_M \}$

$$(Q_1 \cdot Q_2) x y \phi \equiv Q_1 x Q_2 y \phi$$

Introduction	Generalized quantifiers in D	Axiomatization	Non-monotone	Outro
0000	00000	000000	00	0

Dependence Logic with Q

Only monotone increasing unary quantifiers.

- ► D(Q) is $\phi ::= \gamma | \phi \land \phi | \phi \lor \phi | \exists x \phi | \forall x \phi | Qx \phi$, where γ is a literal or dependence atom.
- $M \vDash \sigma$ iff $M, \{\emptyset\} \vDash \sigma$.
- $M, X \vDash \gamma$ if for all $s \in X$: $M, s \vDash \gamma$, where γ is a literal.
- $M, X \vDash = (\overline{t}, t')$ if for all $s, s' \in X$ if $s(\overline{t}) = s'(\overline{t})$ then s(t') = s'(t').
- $M, X \vDash \phi \land \psi$ if $M, X \vDash \phi$ and $M, X \vDash \psi$.
- $M, X \vDash \phi \lor \psi$ if there are $Y \cup Z = X$ such that $M, Y \vDash \phi$ and $M, Z \vDash \psi$.
- $M, X \vDash \exists x \phi$ if there is $f: X \to M$ s.t. $M, X[f/x] \vDash \phi$
- $M, X \vDash \forall x \phi \text{ if } M, X[M/x] \vDash \phi$

 $X[f/x] = \{ \ s[f(s)/x] \ | \ s \in X \} \text{ and } X[M/x] = \{ \ s[a/x] \ | \ s \in X, a \in M \}$

Introduction	Generalized quantifiers in D	Axiomatization	Non-monotone	Outro
0000	0000	000000	00	0

 $M, X \vDash Qx \phi$?

Conservative over FO(Q)

```
M, X \vDash \phi iff for all s \in X, M, s \vDash \phi
```

for all FO(Q)-formulas ϕ .

Respect the quantifiers

The truth conditions of \exists and \forall should be special cases of the general condition.

Respect iteration

$$M, X \vDash (Q_1 \cdot Q_2) xy \phi$$
 iff $M, X \vDash Q_1 x Q_2 x \phi$

Express branching

Be able to express

 $\operatorname{Br}(Q_1, Q_2) xy \phi.$

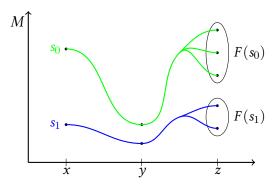
Introduction	GENERALIZED QUANTIFIERS IN D	Axiomatization	Non-monotone	Outro
0000	0000	000000	00	0

QUANTIFIERS IN DEPENDENCE LOGIC

• $M, X \vDash Qx \phi$ iff there is $F: X \to Q_M$ such that $M, X[F/x] \vDash \phi$.

 $X[F/x] = \{ s[a/x] | s \in X, a \in F(s) \}$

Example: M, $\{s_0, s_1\} \vDash \exists^{\geq 2} z Rxyz$



Introduction	Generalized quantifiers in D	Axiomatization	Non-monotone	Outro
0000	00000	000000	00	0

PROPERTIES OF DEPENDENCE LOGIC

 $\blacktriangleright \ M, \emptyset \vDash \phi$

- ▶ **Downwards closure**: If $Y \subseteq X$ and $M, X \vDash \phi$ then $M, Y \vDash \phi$.
- Branching of generalized quantifiers is expressible in D(Q).

 $\operatorname{Br}(Q,Q)xy\phi(x,y,\overline{z})\equiv$

$$\exists w, w' \Big(= (\bar{z}, w) \land = (\bar{z}, w') \land Qx \exists y (y = w \land = (\bar{z}, x, y) \land Qx' \exists y' (y' = w' \land = (\bar{z}, x', y') \land \forall u \exists v (=(\bar{z}, u, v) \land (x = u \to v = w) \land \forall u' \exists v' (=(\bar{z}, u', v') \land (x' = u' \to v' = w') \land ((v = w \land v' = w') \to \phi(u, u', \bar{z}))))) \Big)$$

$$\equiv Qx Qy (x \perp_{\bar{z}} y \land \phi(x, y, \bar{z}))$$

Introduction	GENERALIZED QUANTIFIERS IN D	Axiomatization	Non-monotone	Outro
0000	00000	000000	00	0

Strength

Theorem

$$D(Q) \equiv \text{ESO}(Q)$$

THEOREM Every D(Q) formula is equivalent to one of the form:

$$\mathcal{H}^1 x_1 \ldots \mathcal{H}^m x_m \exists y_1 \ldots \exists y_n \big(\bigwedge_{1 \leq i \leq n} = (\overline{x}^i, y_i) \land \theta \big),$$

where \mathcal{H}^i is either Q or \forall , and θ is a quantifier-free FO formula.

Introduction	Generalized quantifiers in D	Axiomatization	Non-monotone	Outro
0000	00000	●00000	00	0

AXIOMATIZATION

•
$$\check{Q}$$
 is the dual of Q : " $\check{Q} = \neg Q \neg$ "

Axiomatize $FO(Q, \check{Q})$ consequences.

IDEA:

- Construct a natural deduction system in which the normal form can be derived.
- Allow dependencies in normal forms to be replaced by finite approximations.
- Show that in enough models (recursively saturated) the set of finite approximations is equivalent to the original sentence.

INTRODUCTION	Generalized quantifiers in D	AXIOMATIZATION	Non-monotone	Outro
0000	00000	00000	00	0

Axiomatizing $D(Q, \check{Q})$ I: General rules

- Standard rules for $FO(Q, \check{Q})$ formulas.
- Standard rules for conjunction, existential quantifier, and universal quantifier.
- ► Commutativity, associativity and monotonicity of disjunction.
- ► Monotonicity, extending scope, and renaming of bound variables for *Q* and *Q*.
- Duality of \check{Q} with respect to FO (Q, \check{Q}) formulas.

Introduction	Generalized quantifiers in D	Axiomatization	Non-monotone	Outro
0000	00000	00000	00	0

Axiomatizing $D(Q, \check{Q})$ II: Dependence related rules

► Unnesting:

$$=(t_1,...,t_n) \\ \exists z (=(t_1,...,z,...,t_n) \land z = t_i)$$

where z is a new variable.

Dependence distribution:

$$\frac{\exists y_1 \dots \exists y_n (\bigwedge_{1 \le j \le n} = (\bar{z}^j, y_j) \land \phi) \lor \exists y_{n+1} \dots \exists y_m (\bigwedge_{n+1 \le j \le m} = (\bar{z}^j, y_j) \land \psi)}{\exists y_1 \dots \exists y_m (\bigwedge_{1 \le j \le m} = (\bar{z}^j, y_j) \land (\phi \lor \psi))}$$

where ϕ and ψ are quantifier free FO formulas.

Dependence introduction:

$$\frac{\exists x \mathcal{H} y \phi}{\mathcal{H} y \exists x (=(\bar{z}, x) \land \phi)}$$

where \bar{z} lists the variables in $FV(\phi) - \{x, y\}$ and $\mathcal{H} \in \{\forall, Q, \check{Q}\}$.

Introduction	Generalized quantifiers in D	Axiomatization	Non-monotone	Outro
0000	00000	000000	00	0

Approximations

Suppose σ is in normal form:

$$\mathcal{H}^1 x_1 \ldots \mathcal{H}^m x_m \exists y_1 \ldots \exists y_n \Big(\bigwedge_{1 \leq i \leq n} = (\overline{x}^i, y_i) \land \theta(\overline{x}, \overline{y}) \Big).$$

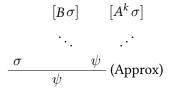
Let $A^k \sigma$ be $\forall \bar{x}_1 \exists \bar{y}_1 \dots \forall \bar{x}_k \exists \bar{y}_k (\bigwedge_{1 \le j \le k} R(\bar{x}_j) \to \bigwedge_{1 \le j \le k} \theta(\bar{x}_j, \bar{y}_j) \land$ $\bigwedge_{\substack{1 \le i \le n \\ 1 \le j, j' \le k}} (\bar{x}_j^i = \bar{x}_{j'}^i \to y_{i,j} = y_{i,j'}))$

Let $B\sigma$ be

 $\mathcal{H}^1 x_1 \ldots \mathcal{H}^m x_m R(x_1, \ldots, x_m).$

INTRODUCTION	Generalized quantifiers in D	Axiomatization	Non-monotone	Outro
0000	00000	000000	00	0

Axiomatizing $D(Q, \check{Q})$ III: The approximation rule



where σ is a sentence in normal form, and *R* does not appear in ψ nor in any uncancelled assumptions in the derivation of ψ , except for $B\sigma$ and $A^k\sigma$.

Introduction	Generalized quantifiers in D	Axiomatization	Non-monotone	Outro
0000	00000	00000	00	0

Completeness for weak semantics

Let $\Gamma \vDash_w \phi$ mean that $\Gamma \vDash \phi$ for any monotone increasing (non-trivial) interpretation of Q (and \check{Q} is interpreted as the dual of the interpretation of Q).

THEOREM This system is sound and complete wrt $\Gamma \vDash_w \phi$ where ϕ is FO(Q, \check{Q}).

Introduction	Generalized quantifiers in D	Axiomatization	Non-monotone	Outro
0000	00000	000000	•0	0

Non-montone quantifiers

 $\mathrm{Br}(Q_1,Q_2)$ may be defined for a rather wide range of quantifiers.

$$M \vDash \exists^{<5} x P x$$

$$M \vDash \exists^{=5} x P x$$

a formula ϕ is satisfied by a team X if for every assignment $s : \operatorname{dom}(X) \to M^k$, if $s \in X$ then s satisfies ϕ .

a formula ϕ is satisfied by a team X if for every assignment $s : \operatorname{dom}(X) \to M^k$, $s \in X$ iff s satisfies ϕ .

I.e., $M, X \vDash \phi$ iff $X = \phi(M)$ (for first-order ϕ).

INTRODUCTION	Generalized quantifiers in D	Axiomatization	Non-monotone	Outro
0000	00000	000000	0•	0

MAXIMAL SEMANTICS

- ► $M, X \vDash_m \psi$ if $M, X \vDash \psi$ and for all $Y \supseteq X : M, Y \nvDash \psi$, for literals ψ .
- ► $M, X \vDash_m \phi \land \psi$ if $\exists Y, Z$ s.t. $X = Y \cap Z$, and both $M, Y \vDash_{\phi} \phi$ and $M, Z \vDash_{\psi} \psi$
- ► $M, X \vDash_m \phi \lor \psi$ if $\exists Y, Z$ s.t. $X = Y \cup Z$, and both $M, Y \vDash_{\phi} \phi$ and $M, Z \vDash_{\psi} \psi$
- $M, X \vDash_m Qx \phi$ if $\exists Y$ s.t. Qx Y = X and $M, Y \vDash \phi$

Introduction 0000	Generalized quantifiers in D 00000	Axiomatization 000000	Non-monotone 00	Outro •

Conclusion

Extending dependence logic with generalized quantifiers is a natural and stable extension.

- ► D(Q) properly extends both FO(Q) and D.
- D(Q) is equivalent to ESO(Q).
- D(Q) has a prenex normal form theorem.
- Similar completeness results as for *D*.

What about non-monotonic quantifiers?

THAT'S ALL FOLKS!